
Expendable robots in the face of uncertainty: catastrophic
failure and mortality as an information source

Emad-ud-din Muhammad∗,1, Subodh Mishra∗,2, Srikanth Saripalli2 and Dylan Shell1

Abstract— Robots navigating hazardous environments face
failures and debilitation. This paper treats a prototypical
setting wherein multiple robots are tasked with performing
a navigation task under uncertainty and they may fail—
potentially even catastrophically. When they do fail, their failure
conveys information about the world in which they operate,
information of value to mission planners or overseers who may
then alter their tactics subsequently. We formulate this scheme
by considering a sequential deployment scenario, where each
individual robot’s mission is modelled as a Markov Decision
Problem (MDP). Given a mission plan (i.e., a policy) along
with models of mortality and communication imperfections,
by analyzing the associated Markov process we describe a
Bayesian estimator, constructing a likelihood (or observation
model) and identifying the appropriate separation of timescales
automatically in a mission independent fashion. As robots are
launched sequentially from a base station, missions are executed
with some successes and with some failures, allowing incre-
mental refinement of an estimate of hazards in the world by
the mission control operator. We detail a small-scale hardware
implementation of the setting through the use of inexpensive
UAVs, which may be rendered useless after a crash, using cheap
ArUco markers for indoor positioning as a reasonable imitation
of real world imperfections. The hardware demonstration is
supplemented by numerous results from simulations to make
the case for disposable flying vehicles.

Index Terms— Expendability, Disposable Robots, Failures

I. INTRODUCTION

Robots operating in sufficiently extreme settings, in highly
contested environments, at the very edge of their perfor-
mance envelopes, or under adversarial conditions will fail.
Much research has aimed at maximizing robustness, seeking
to avoid such outcomes and focuses on prolonging life [1]–
[3]. We adopt the perspective that, even if postponed, fail-
ure is inevitable in robots and that catastrophic failure is
an ineluctable fact for some scenarios. We are, therefore,
interested in the question of ‘How to make death count?’

Considering a model where robot mortality is presup-
posed, this paper examines how destruction of a robot may be
informative. The basic setting is that a mission control opera-
tor has a swarm of cheap, disposable robots that are deployed
sequentially, each performing a hazardous reconnaissance
mission. Robots either complete their mission successfully or
fail to return. Situational awareness is improved in either case
as the operator uses debilitating robot failure (or destruction)
as source of information. An example of such a scenario is
shown in Fig. 1.

∗ These authors have contributed equally.
1 With the Department of Computer Science and Engineering.
2 With the Department of Mechanical Engineering.
All authors are with Texas A&M University, College Station, Texas, USA.

Fig. 1: The UAV is tasked to fly from Point A to Point B and back to
A again. If the UAV flies over the fan while it is on, it crashes with high
probability. Success or failure to return to the launching point provides
information about the operation of the fan.

Our treatment of this problem separates the concerns of the
mission controller —which are high level, namely assessing
the level of peril involved— from the considerations about
the execution of individual missions at the low level. Both
manage uncertainty: the mission control operator is solving
an estimation problem, while the robots are executing a mis-
sion to actively achieve their ends (e.g., maximizing reward,
reaching goal states, etc.) amid non-determinism. This paper
provides a general way to construct the mission controller’s
estimator, given descriptions of the low level missions.

For applicability beyond one single domain, we give a
pipeline of general algorithms. First we construct an indi-
vidual low-level plan for an individual robot to conduct its
mission, which is modelled as a Markov Decision Prob-
lem (MDP). We have UAVs flying a scouting mission in
our particular case, and classical techniques are used to
compute the plan (i.e., optimal policy) comprising flight
actions under perturbations. This policy forms part of the
input for the next stage. It is used in combination with
an additional pair of models —a parameterized model de-
scribing mortality and another characterizing robot-to-base
station communication— to compute a likelihood function.
The resulting likelihood characterizes a virtual sensor model
leading naturally to a Bayesian estimator for the mission
controller. As time evolves, information from each mission
is fused via this estimator to yield a sharper picture of
the operating conditions. Overall, this treatment exploits
a separation in timescales between the low-level policies,
describing atomic actions for the robots, and their individual
missions, as logical units for the mission control operator.
The time leading to this separation is determined automati-
cally in our approach.

Besides the formulation we propose to treat failure in ex-
pendable robots as an information source, we also describe a
hardware demonstration using widely-available, inexpensive
UAVs. Our implementation has robots executing discrete
sets of actions through the use of classical techniques for
continuous estimation and control. Along with hardware
experiments conducted in our laboratory, we also examine
several simulated scenarios.

II. RELATED WORK

Within the robotics literature, Lyu et al. [3] prefigure our
work in explicitly identifying the value of expendable robots
and by considering a notion of path diversity in planning
motions for robots under failure. Recently, Otte and Sofge [4]
treated a similar problem and adopted a perspective we dis-
covered to be surprisingly close to ours. But contrary to their
approach our model emphasizes stochasticity in the agents’
missions. Also, since we focus on decoupling the operators’
and robots’ problems, the mission plans are provided as
input for us, rather than being sought in order to maximize
informativeness. Much of our paper, additionally, concerns
details of the system used for our hardware demonstration.
The engineering and manufacture of single-use and low-cost
disposable UAVs has been considered by [5] and [6].

The policies executed by our robots realize a sort of virtual
sensor. The idea that sequences of actions enable a robot to
simulate a different sensor underpins the theory in [7].

III. PROBLEM FORMULATION: MODELS & ALGORITHMS

We organize our presentation by describing each element
in detail and describe their interrelations incrementally.

A. Overview

The mission control operator, assumed to be situated
at an observation outpost, has a set of identical robots
that we will take to be UAVs. The robots are released
sequentially and each flies their mission individually. The
robots communicate accomplishment of their mission, or
may communicate failure, or may fail to communicate at
all. The operator, employs a Bayes filter, constructed from
models of the preceding aspects, and a mortality model,
to reason about the perilousness of the world. In what
follows, §III-B treats an individual robot’s mission; clarity of
presentation is improved by treating all the UAVs as identical
(so the formulation uses a single plan, but generalization
to an heterogeneous setting is straightforward). Then §III-C
describes our treatment of the state-based mortality model,
followed by §III-D where we model a UAV’s communication
with the mission controller. This leads to construction of a
family of MDPs (§III-E) that, under a given policy, gives a
collection of Markov chains (§ III-F). Analysis of these (§ III-
G) yields a mortality-informed estimator for the mission
operator (§ III-H). Finally, these (many!) pieces are collected
in the form of pseudocode (§ III-I).

B. The basic UAV mission

We use an MDP to describe a UAV’s mission, operating
under uncertain dynamics. We consider a scouting mission
where a robot flies, on an outward leg, toward a point of inter-
est, then returns to its starting point. Building on the standard
definition (cf. [8]), a mission-oriented Markov Decision
Process (MDP) is a tuple Mmission = 〈S,A,P,R, γ, sg〉:
• The finite set of states S = {0,∆x, 2∆x, . . . , k∆x} ×
{0,∆y, 2∆y, . . . , `∆y}×{out , ret}. We have ignored alti-
tude and discretized the map into k× ` spatial cells of size
∆x × ∆y. The last part of the state encodes whether the
UAV is on its outward leg or is returning.
• A set of actions A = {→,←, ↑, ↓,↖,↗,↙,↘} repre-

senting movement nominally toward an 8-neighbor.
• Transition function P written as Pauv = P[St+1 = v|St =
u,At = a]. The value out flips to ret only at the point of
interest.
• The reward function R : S → R+.
• The discount factor γ ∈ [0, 1).
• A distinguished goal state sg ∈ S , with Pasgv = 1 if
v = sg , and 0 otherwise, for all a ∈ A.
Notes: data collected for purposes of system identification

were used to construct transitions Pauv . Reward R and dis-
count γ shape how aggressively certain map regions are to be
avoided, at the cost of increased navigation. The requirement
on sg’s transitions ensures it is an absorbing state. For our
case, the UAV starts at a physical location and takes off, and
then is treated as at (0, 0, out). After arrival at (0, 0, ret),
the UAV lands, representing successful completion of the
mission. All actions at (0, 0, ret) are quashed, making it an
absorbing state.

C. State-based mortality model

One interpretation of exponential discounting is mean-
ingful for systems that may fail: it models circumstances
in which, with probability 1 − γ at each step, something
occurs to terminate the robot’s execution. Unfortunately this
standard treatment ties success or failure solely to the length
of an execution, yielding comparatively little information. We
wish, instead, to connect mortality to particular states—to do
this we posit a richer model. In our model, we express factors
that affect mortality via a vector ρ = [ρ1, ρ2, . . . , ρ`] ∈ R`
of parameters.

We define a mortality model parameterized by ` variables
to be a function D : S × R` → [0, 1], where we write
D(s ; ρ1, ρ2, . . . , ρ`), or D(s ; ρ), to represent the probability
of catastrophic failure of a robot in state s, given that the
` parameters take values ρ1, ρ2, . . . , ρ`. The assumption is
that the event of failure is drawn, independently, with this
probability for each time step spent in state s.

Intuitively, the idea is that one identify ` potential threats
to which to attribute reduced mortality of the robot. To
each of these we attribute a severity denoted ρi. Then,
with known values of the attributes, we can compute their
contributions to the hazards facing the robot when it is
in state s. (Note that there is no assumption that these

factors contribute independently.) By way of example, one
might expect gusting crosswinds and radiation from a nearby
reactor to affect light operations, hence positing that ρwind
take a value from 0 kn to 50 kn, and ρrad from 0 µSv–
100 µSv. Then, given a particular value of ρrad describing the
source strength, the impact on the robot at s ∈ S would be
scaled by its distance from the source. Similarly, given gusts
with maximal magnitude ρwind, the topographic features of
the environment would attenuate the effect on the robot as a
function of position.

D. Modeling communication with the observation outpost

Once tasked and released, our UAVs do not maintain
continuous contact with the mission control. Instead, we
assume that they communicate only at a few cessation events.
One example is the absorbing state sg that the mission MDP
includes as the goal. The next section will detail how, using
the mortality model, an additional absorbing state, s×, is
introduced for catastrophic failure. Our model of unreliable
communication is simple but expressive: to each absorbing
state a unique message is specified via function mesg(·), and
also a probability of delivery via dlvr(·). (It is straightfor-
ward for this probability to depend on information like pose;
brevity dictates we treat only the basic model here.) In our
case, sg

mesg7−−−→ ‘Mission Accomplished’ , s×
mesg7−−−→ ‘Mayday!’ .

E. Transformed MDP

Using Mmission, D(s ; ρ), mesg, and dlvr, we construct a
parameterized family of MDPs Mfate(ρ) next. First, collect
the absorbing states from S and fabricate a new state s×,
which should be absorbing (i.e., extend Pauv so it returns to
itself under all A), giving:

Sabs := {s ∈ Sint | s is absorbing} ∪ {s×}.

Then, given a value for ρ, the MDP Mfate(ρ) has
• States S \ Sabs ∪ {sm | s ∈ Sabs} ∪ {s¬m | s ∈ Sabs}.

In essence, each absorbing state s has been split into two
states, sm and s¬m, the first representing arrival of the
robot at the state with mesg(s) having being received by
the mission controller, the second representing the case that
message transmission failed.
• Construct transition function, denoted T = T auv , as:

(1) For all u and v ∈ S \ Sabs we have, for every a ∈ A,
T auv =

(
1−D(u ; ρ)

)
Pauv .

(2) For all u ∈ Sabs we have, also for every a ∈ A,
T auv = 1 if u = v and T auv = 0 otherwise.

(3) For all u ∈ S \ Sabs and v ∈ Sabs we have:

T auv =

{
D(u ; ρ) dlvr(v) when v is sm,
D(u ; ρ) (1− dlvr(v)) when v is s¬m.

• Inherit A, R, and γ from Mmission.

In other words, Mmission is transformed into a mortality
MDP Mfate wherein absorbing states describe points where
execution ceases, directly after a message has been sent under
communication that may be unreliable. With known values
for ρ, the mortality parameters, we obtain a particular Mfate.

The essence is that (1) scales the robot’s dynamics so it
behaves consistently with Mmission when it has not failed;
and for failure, quantified via mortality model D(s ; ρ), (3)
adds treatment of message delivery. Execution may now
also cease at extra states that describe the vehicle’s demise
(sm× , s

¬m
×). These two states considers a vehicle attempting

to communicate in the final throes of its death, and values
for dlvr(s×) express how effective this is expected to be.

F. Decoupling policies and mission Markov chains

By construction any policy π for Mmission may prescribe
actions in Mfate as well, since we only care about executions
until some state in Sabs is reached. Using Mfate(ρ) and a
given π, next we can construct a family of parameterized
Markov chains, which we denote C [π]

fate(ρ). It is the standard
process: eliminate the action choice by having the transition
from state s to s′ depend on the actions stipulated in the
policy at s, i.e.,

∑
a∈A Pr[π(s) = a]T ass′ . (This Pr[·] is

only needed here for polices that are not deterministic; in
the deterministic case all probabilities except one are zero.)
So long as either the probability of reaching sg under π
in Mmission is positive, or D(· ; ρ) > 0, then C

[π]
fate(ρ)

is an absorbing Markov chain. Typically in practice both
conditions hold, though only one or the other suffices.

G. Fundamental matrix analysis of mission Markov chains

To any discrete absorbing Markov chain, with r absorbing
and n − r transient states, is associated a summary of
expected temporal behavior that can be characterized via
single (n − r) × (n − r) matrix called the fundamental
matrix [9]. Let us denote the fundamental matrix for C [π]

fate(ρ)
by N(ρ). The entry nij of this matrix gives the expected
number of times the vehicle is in transient state sj given
that it started in transient state si. (The most expensive step
the computation of the matrix is an inversion operation.)

Two properties we require are computed, assuming the
initial state of the vehicle is at si, as follows [9]:

. Time to absorption gives the expected number of steps to
reach some s ∈ Sabs: τ(ρ) =

∑n−r
j=1 nij(ρ).

. Absorption probabilities give the probability that the chain
is absorbed in state sk as Pr(sk,ρ) =

∑n−r
j=1 nij(ρ) rjk(ρ),

where rjk(ρ) describes the probability of transiting from
transient state sj to absorbing state sk, a submatrix of
elements from the transition matrix of C [π]

fate.

H. Bayesian estimation of mortality parameters

The mission control operator wishes to estimate the values
of the mortality parameters ρ on the basis of missions flown
by the UAVs. We treat the estimation problem via a Bayes
filter. Writing zt for the observation at time t, then a suitable
update equation [10] is

p(ρ|z1, z2, . . . , zt, π) ∝ p(zt|ρ, π) p(ρ|z1, z2, . . . , zt−1, π),

where we have been explicit in the dependence on policy π.
Because, for the duration under consideration, the values of
mortality parameters are assumed to be unchanging (i.e., this

is a parameter estimation problem, not a state tracking one),
the recursive expression above gives the complete form of
the filter once three aspects have been clarified: treatment of
time, the form observations take, and the likelihood function.

1) Time (and timescale separation): To the mission oper-
ator, the significance of having not received a message de-
pends on the time elapsed since the last UAV was dispatched.
As missions involve the robot being buffeted by uncertainty,
there is no well-defined point at which to conclude that
it must have failed and, hence, to draw the appropriate
inferences for the mortality factors. We resolve this by having
the mission operator’s filter be event driven: the time variable
ticks when either a message is received, or we declare the
vehicle to be ‘missing in action.’ For the latter case, we
compute a time ∆tmax = κ maxρ τ(ρ), where scalar κ gives
a safety margin beyond the expected time to absorption.
When D is monotonic in risk factors, as is typical, the
maximum is easy to evaluate analytically, viz. it is just
τ(0). Thus, analysis of the fundamental matrix helps identify
an appropriate timescale to separate the mission operator
abstraction from that of the low-level UAV.

2) Observations: The kth observation zk is either a mes-
sage received (i.e., an element in the range of mesg(·)),
or a declaration that ∆tmax has elapsed and nothing has
been received. We the former occurence is written as zk =
mesg(sj) for some sj ∈ Sabs; the latter is denoted zk = ∅.

3) Likelihood function: The sensor model, p(zt |ρ, π),
can now be written in terms of absorption probabilities.
Concisely and exactly

p(z |ρ, π) =

Pr(sm,ρ)

if ∃s ∈ Sabs s.t.
z = mesg(s),∑

s∈Sabs

Pr(s¬m,ρ) if z = ∅,

0 otherwise.

Since mesg(·) is injective, summing across z gives 1.
As the absorption probabilities are computed for the limit,
the sensor model is technically only exact asymptotically
for ∆tmax → ∞. We express ∆tmax as proportional to the
expected time to absorption, because, since the actual time
is distributed exponentially, a small κ can be effective.1 The
Bienaymé–Chebyshev inequality [11] easily gives a bound
on the error, if desired.

I. Pseudocode of the complete algorithm

Pseudocode for the elements outlined in the preceding ap-
pears in Algorithm 1. (Note: it includes some simplifications
made to match the system implementation we detail next,
there ` = 1, so ρ = ρ and the subscripts differential evolving
estimates.)

IV. THE SYSTEM

In this section we describe a small scale experimental
setup used for demonstration. We split the computation over
the UAV and a supplementary Offboard Computer owing

1We used κ = 2.

Algorithm 1: Mortality Estimation Algorithm
Result: Estimated mortality for an agent

1 initialize motionModel using real flight data
2 initialize γ with a constant
3 initialize Mortality D and Success E states
4 initialize ρ0 with all zero values
5 initialize ρs with an array of flat mortality profiles
6 R ← low values except for state sg
7 R{indexOf(sg)} ← high value
8 gridSize ← k × ` grid size
9 gridRes ← (∆x,∆y) resolution in meters

10 K ← Number of planned missions

11 for i← 0 to size(ρs) do
12 Ps = evalSensorTransFunc(ρs{i}, D, E , gridRes,

gridSize, motionModel)
13 sensorModel{i} = computeDtmcSensorModel(Ps)
14 end
15 PM = evalStateTransFunc(ρ0, D, E , gridRes, gridSize,

motionModel)
16 πM ← valueIterationAlgo(PM , R)
17 while k ≤ K do
18 launchAgent(πM)
19 [timedOut,zk] ← retreiveMissionResult()
20 if timedOut is true then
21 zk ← ∅
22 end
23 Bel(ρk+1) = bayesFilterUpdate(zk, sensorModel,

Bel(ρk))
24 end

to the UAV’s physical and computational constraints; the
framework is generic and can be run entirely on any UAV
with adequate computational prowess.

Fig. 2: System Description: Each UAV acquires images of ArUco markers
and transmits data over Wi-Fi to an ArUco Marker-based Pose Estimator
running on its Offboard Computer which provides a noisy measurement
(Vision Position Estimate) of the UAV’s location in space. An Extended
Kalman Filter (EKF) onboard the UAV fuses the Vision Position Estimate
with the IMU updates to generate a smooth estimate of the UAV’s pose
(Fused Pose Estimate) which is used for autonomous control and planning.

A. The UAV

The proposed approach was implemented on an inexpen-
sive consumer UAV called the Skyviper v2450 Streaming
Drone that weighs 148 g, has an average flight time of 8 min
to 10 min and has a downward looking camera that transmits

Fig. 3: A square trajectory flown using ArUco markers for localization.

images of resolution 1280p×720p at 20 Hz2 over Wi-Fi. It
runs the latest Arducopter [12] firmware with the ability to
localize itself indoors using vision-based pose3 estimation
algorithms like Visual SLAM. We used ArUco markers [13],
[14]. The Skyviper’s CPU runs an Extended Kalman Filter
(EKF) [15] which fuses information from the onboard IMU
and the ArUco Marker-based Pose Estimator (called AMPE
henceforth) running on the Offboard Computer to provide
a smooth estimate of the UAV’s current pose. The pose
estimate generated by the EKF is fed to the PID controller
on board the UAV for autonomous control and way-point
tracking.

B. The Offboard Computer

We use a laptop computer with ROS [16] as the Offboard
Computer and communicate with the UAV over Wi-Fi using
MAVROS [17]. The AMPE and the Planning algorithms run
on the Offboard Computer Fig. 2 gives a visual summary
of the system components and their interactions, as just
described.

2This is an average value, in practice the frequency drops as the UAV
moves farther from the Offboard Computer

3Position refers to (x, y, z) coordinates with respect to a frame while
pose also encodes attitude in addition to position.

Fig. 4: Histograms of path-lengths ending in different terminal states, for
100 000 Monte-Carlo trials. Histogram for a simulated world where (Left)
Start and Goal grid-cell lie on the boundary cells & (Right) Start and Goal
grid-cell does not lie on the boundary cells.

Fig. 5: UAV trajectory shown in X–Y plane. The plot shows the UAV
following a two-way policy from Start Cell to Goal Cell and then back
to the Start Cell (sg) with the fan turned Off (Left frame) and On (Right
frame) respectively. Increasing color shows increasing time.

V. INDOOR LOCALIZATION AND CLOSED LOOP
CONTROL

We carry out all the experiments indoors and localize the
UAV in a planar world of ArUco markers (recall Fig. 1).

The UAV sees the markers with its downward looking
camera and transmits the image over Wi-Fi to the AMPE
running on the Offboard Computer at a frequency equal to
the rate at which the Offboard Computer receives images
from the UAV. The images are received with 300–350 ms
delay, which has a direct relationship with the distance of
the UAV from the Wi-FI access-point. The delay is used
as tuning parameter for the EKF running onboard the UAV,
which if not set close to the true value, results in oscillations
in the UAV’s flight, also known as ‘toilet bowling’. The effect
of motion blur and body vibration also deteriorate the quality
of image and hence the quality of the estimated pose which
ultimately results in poor closed loop control response.

For testing the AMPE, we command the UAV to fol-
low 5 way-points, viz. (0 m, 0 m), (4 m, 0 m), (4 m, 4 m),
(0 m, 4 m), (0 m, 0 m) which form the corners of a square
in the ArUco world. The UAV negotiates a near square tra-
jectory before landing close to where it had started (Fig. 3).

The Root Mean Squared Error (RMSE) along X , Y and
Z axes were found to be 35.51 cm, 40.39 cm and 14.29 cm
respectively. The RMSE was computed by comparing the
EKF’s pose output with the setpoints generated by the low
level trajectory generator of the UAV. We use these values
to tune the measurement nois parameter of the EKF onboard
the UAV.

VI. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed algorithm
using Monte Carlo Simulations and hardware implementa-
tion using an UAV (described in §IV and §V). An upward
facing industrial fan (visible in yellow in Fig. 1) is used as a
hazard in our real world experiments. The fan creates an air
vortex which either leads to significant deviation of the UAV
from its policy-dictated path or in a lethal crash. There are
certain assumptions which are invariant between simulated
and real world experiments: (1) The actions proposed by
A remain the same for both the worlds. (2) The estimated
motion model, true for the UAV, is used for both worlds.

(a) Evolution of the Bayes filter in a simulated scenario. The blue
line shows the true value of ρ, known by construction in the
simulator; the red dashed line is the filter’s mean.

(b) An enlarged view of the final
frame from Fig 6a at left. The filter
has converged to the correct value
ρ = 0.1.

(c) Analogous frames showing the fil-
ter’s evolution for deployments of phys-
ical UAVs.

Fig. 6: Convergence of the mission control operator’s belief about value of mortality parameter (ρ) is shown via a series of key-frames taken from the
Bayes filter output in a simulation (Figs. 6a and 6b) and in physical experiments (Fig. 6c).

(3) The MDP discount-factor γ is kept at a constant 0.95 for
all missions. (4) The grid size (8×8) and resolution (0.5 m) is
kept the same for both simulated and real world experiments.
(5) The same mortality model was used: it has ` = 1, a
single ρ parameter, that scales the spatial field constructed
by placing a 2D Gaussian centered at the location of the fan.

For both worlds, we evaluate a policy πM which takes the
UAV from a starting location towards a way-point and then
back towards the starting location. Policy πM is unaware of
hazards present and may cause UAV to fly straight into air
vortex created by the hazard.

A. Simulation Experiments

The convergence of the estimator (in Algorithm 1) was
first validated using numerous simulations because it was
infeasible to reach convergence using real world experiments
only, as that would require us to fly numerous missions,
risking damage to the all UAVs available.4 Apart from this,
we also ran a statistically large number of simulated missions
where each mission corresponded to a single Monte-Carlo
trial, to evaluate the distribution of length of paths that end
in terminal states and paths where agent drifted out of the
boundaries of the simulation grid. These experiments can be
divided into two categories: 1) trials where the start state and
designated way-point were allocated cells that were close to
the boundaries; 2) trials where start state and the designated
way-point were allocated cells far-away from the boundaries.
Results for these experiments are shown in Fig. 4. We can
observe that trials for case 1 recorded a large number of cases
where the agent drifted out of world boundaries. Also, trials
resulting in mission success were larger for case 2 compared
to case 1.

B. Real World Experiments

Given the policy πM and the fan turned-on in the middle,
i.e. at coordinate (2 m,2 m), of the physical world, the
experiment consists of sending the UAV from starting grid-
cell to the grid-cell on the opposite side on the out-leg, then

4As seen in the left frame of Fig. 6, the algorithm does converge to a
value of mortality, but requires many, in this case 100, simulated missions.

returning to the starting point on the ret-let (corresponding to
sg). This process is repeated 26 times and the corresponding
flight data are logged. Out of these 26 flights, UAVs crashed
6 times and was Missing-In-Action (no message received) for
a total of 3 times. We deem a UAV to have crashed when
it becomes so unstable that it drops to the floor or when
the standard deviation of its roll or pitch (or both) angles
exceed a predefined threshold. The crash scenario occurs due
to aerodynamic instability which has a detrimental effect on
indoor localization (§V).

The X–Y trajectory of one of the 26 missions is shown in
the right frame of Fig. 5. To make the effect of the fan on
the UAV’s flight path prominently perceptible, we also show
a X–Y trajectory for the same policy with the fan turned off
in the left frame of Fig. 5. As should be visually evident,
the right frame shows a more perturbed trace than the left
frame.

The evolution of the mission controller’s belief (recall,
we consider a case with a single ρ) is visible in Fig. 6. In
simulation, in Fig. 6a, with ample data from many missions,
the histogram converges to a peaked distribution around the
true value (detail depicted in Fig. 6b). For hardware exper-
iments in the real world, the set of observations produced
is smaller and, though the belief shows improvement in
Fig. 6c as information is gained, it would gain by additional
observations. Fig. 7 shows only the maximum likelihood
estimate for ρ at each time rather than the whole distribution,
making it easier to see temporal aspects of the belief’s
evolution along with the particular messages received.

In summary, the UAV, in executing missions and failing,
is able to provide information about peril within the en-
vironment. The following insights were gleaned from the
experiments:

• The air vortex created by the fan, sways the UAV away
from nominal path dictated by the policy and at times
the UAV was not able to recover from the aerodynamic
instability. This happens primarily because the UAV is
unable to get a clear view of the markers and cannot
localize. If this condition persists for a long time, the UAV
crashes.

Fig. 7: Bayesian filter history of Mortality estimate over time, in (Top)
a simulated world and (Bottom) physical world. Observations (zk) are
shown as colored diamonds. No diamond, signifies a point in time with
no observations received. Over time, the estimate tends to converge towards
a mortality estimate.

• In reality, the stochastic model of motions P is altered
by the presence or absence of the fan, even if it does not
result in complete failure. (Figure 5 shows this fact quite
markedly: the robot is delayed in reaching its destination
but may still succeed eventually.) The implication is that if
∆tmax is computed for a motion dynamics that is benign,
then the actual perturbations in the motion causes the UAV
to use more time per trajectory than the time to absorption
calculation factors in. This makes the mission controller
believe that the UAV has gone Missing-In-Action. A value
of κ > 2 helps ameliorate this effect in practice. But it
points to valuable a theoretical improvement too: If one has
information to estimate changes to the motion dynamics (as
a function of ρ), then one can easily incorporate these as
modifications to Pauv when constructing T auv for Mfate(ρ).
Doing so is straightforward and would improve the estimate
of the peril present in the environment.

VII. DISCUSSION AND FUTURE WORK

We believe that one of the interesting aspects of the
paper is the treatment of several elements typically confined
to a particular role to be considered rather more broadly.
For instance, the policies that solve an MDP are not only
the output (i.e., produced by value iteration) but also serve
as input to others in the longer pipeline of algorithms we
describe. Automated analysis of those inputs provides an

explicit time scale separation. Robots executing policies
including certain communication behavior are wrapped up
in being a sensor.

REFERENCES

[1] R. C. Arkin, “Survivable Robotic Systems: Reactive and Homeostatic
Control,” in Robotics and Remote Systems for Hazardous Environ-
ments, M. Jamshidi and P. Eicker, Eds. Prentice-Hall, 1993, pp.
135–154.

[2] Y. Shapira and N. Agmon, “Path planning for optimizing survivability
of multi-robot formation in adversarial environments,” in Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015, pp. 4544–4549.

[3] Y.-H. Lyu, Y. Chen, and D. Balkcom, “k-Survivability: Diversity
and Survival of Expendable Robots,” IEEE Robotics and Automation
Letters, vol. 1, no. 2, pp. 1164–1171, Jul. 2016.

[4] M. Otte and D. Sofge, “Path Planning for Information Gathering
with Lethal Hazards and No Communication,” in Proceedings of
International Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2018.

[5] P. E. I. Pounds, “Paper Plane: Towards Disposable Low-Cost Folded
Cellulose-Substrate UAVs,” in Proceedings of the Australasian Con-
ference on Robotics and Automation, Dec. 2012.

[6] G. Grau, E. J. Frazier, and V. Subramanian, “Printed unmanned aerial
vehicles using paper-based electroactive polymer actuators and organic
ion gel transistors,” Microsystems & Nanoengineering, vol. 2, no. 1,
p. 16032, Jul. 2016.

[7] J. M. O’Kane and S. M. LaValle, “On comparing the power of robots,”
International Journal of Robotics Research, vol. 27, no. 1, pp. 5–23,
Jan. 2008.

[8] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, NJ, U.S.A.: Prentice-Hall, Inc., 2009.

[9] I. Bradley and R. L. Meek, Matrices and Society: Matrix Algebra and
Its Applications in Social Sciences. Princeton University Press, 1986.

[10] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA, U.S.A.: MIT Press, 2005.

[11] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ization and Probabilistic Techniques in Algorithms and Data Analysis,
2nd ed. Cambridge University Press, 2017.

[12] ArduPilot Dev Team, “Mavros,” http://ardupilot.org/copter/, 2019.
[13] S. Garrido-Jurado, R. Muñoz Salinas, F. Madrid-Cuevas, and

R. Medina-Carnicer, “Generation of fiducial marker dictionaries using
mixed integer linear programming,” Pattern Recognition, vol. 51, 10
2015.

[14] F. Romero Ramirez, R. Muoz-Salinas, and R. Medina-Carnicer,
“Speeded up detection of squared fiducial markers,” Image and Vision
Computing, vol. 76, 06 2018.

[15] P. S. Maybeck, Stochastic models, estimation, and control, ser. Math-
ematics in Science and Engineering, 1979, vol. 141.

[16] M. Quigley, K. Conley, B. P Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y Ng, “Ros: an open-source robot operating
system,” vol. 3, 01 2009.

[17] Mavlink, “Mavros,” https://github.com/mavlink/mavros, 2019.

http://ardupilot.org/copter/
https://github.com/mavlink/mavros

	Introduction
	Related work
	Problem Formulation: Models & Algorithms
	Overview
	The basic UAV mission
	State-based mortality model
	Modeling communication with the observation outpost
	Transformed MDP
	Decoupling policies and mission Markov chains
	Fundamental matrix analysis of mission Markov chains
	Bayesian estimation of mortality parameters
	Time (and timescale separation)
	Observations
	Likelihood function

	Pseudocode of the complete algorithm

	The System
	The UAV
	The Offboard Computer

	Indoor Localization and Closed Loop Control
	Experimental Results
	Simulation Experiments
	Real World Experiments

	Discussion and Future work
	References

