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Indoor Occupancy Estimation Using Particle
Filter and SLEEPIR Sensor System
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Abstract—We recently developed a synchronized low
energy electronically chopped passive infrared (SLEEPIR)
sensor that can detect both stationary and moving occupants
by incorporating a liquid crystal (LC) shutter with a tradi-
tional passive infrared (PIR) sensor. However, its detection
accuracy is still largely impacted by environmental infrared
noises. In this paper, we present a Particle Filter (PF) based
system-level algorithm that employs a network of SLEEPIR
sensors which are installed at different points of interest
within an indoor space. The method interprets the incoming
observations from the field of view (FOV) of each sensor via
the likelihood function to update the state of the PF. The PF
output is a probability density function (pdf) that represents
the occupancy state of the entire observed space. The sensor
location, observation cone, range, observation frequency and
historic inter-sensor correlation are the key parameters that
contribute to the likelihood function design. Since the method
utilizes the historic correlation among sensors, the pairs of correlating sensors often perform self-correction whenever a
faulty observation is encountereddue to either sensor limitations or due to environmentalnoise. Occupancy is established
through a thresholding function applied to the output pdf of the PF. A lab-based dataset was collected over a period of
360 hours using the SLEEPIR sensor system. Results indicate an average 8.25% occupancy accuracy improvement when
compared to the accuracy state delivered by individual SLEEPIR nodes.

Index Terms— Bayes filters, smart devices, recurrent neural networks, edge computing, passive infrared sensors.

I. INTRODUCTION

THE proposed method is essentially a proof of concept
that with limited number of sensors and sparse spatial

coverage, a Particle Filter (PF) can be used to track the human
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occupancy of an indoor space regardless of environmental
infrared noises. The method exploits the temporal bounds on
the change in occupancy state of the environment. It also
factors-in the proximity of sensor nodes to each other, and
thus PF measurement updates are structured in a way that
human occupancy probability is spread spatially in expanded
vicinity around the sensor rather than only inside the sensor
observation cone. Human occupancy detection is an essential
component of many applications like indoor security sys-
tems, lightening and Heating, Ventilation & Airconditioning
(HVAC) automation systems, activity tracking systems [1]–[3],
and monitoring systems for elderly people who need around
the clock care [4]–[6]. Alternate options like camera-based
occupancy tracking generally fail to deliver because high
infrastructure and computational cost, privacy concerns and
failure to track high velocity motions. Apart from cameras,
sensors like thermopile arrays [7], IMUs or Wi-Fi sensors are
either too noisy or expensive to be part of a scalable solution.

Since passive infrared sensors (PIR) are relatively inex-
pensive and have been traditionally used in human presence
monitoring systems, many have jumped on the opportunity and
designed efficient and scalable localization systems based on
such sensors. The systems employing such sensors can detect
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heat energy emitted by human body within a range of roughly
10 meters. However, their incapability of detecting station-
ary occupants limits their applications in occupancy-centered
smart home appliances [8], [9]. To enable PIR sensors to detect
stationary occupants, we recently developed a synchronized
low energy electronically chopped PIR (SLEEPIR) sensor
[10], [11]. The node consists of a PIR sensor, a liquid
crystal (LC) infrared shutter and a driving circuit. By elec-
trically chopping the long-wave infrared (8-12µm) radiation
received by the PIR sensor, the SLEEPIR sensor can detection
both stationary and moving occupants. However, its detection
accuracy is still largely impacted by environmental infrared
noises [12], [13].

To address this, we present a PF based human presence
estimation algorithm for the SLEEPIR sensor system that
includes three sensor nodes sparsely located in an indoor
space. The proposed algorithm consumes low-power and is
cost-effective and thus provides scalable service which makes
the proposed SLEEPIR sensor system eligible for widespread
future adoption.

The proposed particle filtering approach involves a PF
which relies on three assumptions (1) Any human subjects
entering the observed area will trigger at least one SLEEPIR
sensor node. (2) The SLEEPIR sensors have a limited Field-
of-view (FOV) and thus these only have sparse coverage of
the area monitored for human occupancy (3) Collected ground
truth data represents the expected traffic conditions within the
entire monitored area.

We observed the ground truth data that spanned over
15 days. Although the experiment testbed was artificially
created in a lab for dataset collection purposes, yet the
experiments were uncontrolled. We installed three SLEEPIR
sensor nodes in two different configurations at the testbed to
collect dataset as shown in Figure 1. Primary aim of this study
is not to optimally cover the testbed space using SLEEPIR
sensors but to determine the minimal number of sensors to
achieve a level of accuracy that ensures less than 5% chance
of encountering false positives or negatives in any given week.
This occupancy sensor performance standard is listed by US
Department of Energy in their Saving Energy Nationwide in
Structures with Occupancy Recognition (SENSOR) Program
overview [14].

In the presented work, we investigate the use of a PF
for the purpose of estimating the human occupancy in an
indoor environment while utilizing a minimal number of
low-cost SLEEPIR sensor nodes. This effort aims to make
the following key contributions. (1) We realize a particle
filter based occupancy detection method that can achieve
superior or equivalent accuracy when compared to statistical
machine learning models. (2) Robust occupancy detection is
achieved while maintaining a limited the sensor footprint in
the monitored area. (3) The solution is scalable to variations
in the room size, geometry, and overall monitored area size.

We present a literature review in section 2 that outlines the
state-of-the-art in estimation methods for human occupancy
detection. In section 3, we give a detailed description of
the method along with a brief overview of the SLEEPIR
sensor system that our method uses for occupancy estima-
tion. Section 4 presents a brief discussion on the method

Fig. 1. We use two different floorplans as testbeds. We only
use 3 SLEEPIR sensor nodes for each floorplan for dataset collection.
Human occupancy is estimated for the locations X1 through X3. Ground
truth is collected via surveillance cams.

and expected impact various parameters on system accuracy.
Section 5 introduces dataset collection strategy and method
performance evaluation. Section 6 gives a brief conclusion of
the presented work.

II. LITERATURE REVIEW

As such, there exists wide support in the literature for the
fact that particle filters can be applied to complex systems
through calculating a distribution of particles. PF accuracy can
approach optimal estimation as it does not require the process
and observation noise to have Gaussian distribution which
is a requirement for traditional Gaussian filtering algorithms
such as the Extended Kalman Filter (EKF) or Unscented
Kalman Filter (UKF) [15]. Particle filters can estimate the
actual state within a specific error range due to particles’
dispersion that encompasses the possible hypothetical states
in which the system can be. However, particle filters are
challenging to optimally implement as these require a signifi-
cantly large number of particles to produce accurate output
and thus the calculation amount is much higher than that
with the Gaussian approximation methods like EKF [16],
which restricts their use in real-time application to some
extent. To this end, a real-time EKF based networked sensor
based occupancy estimation algorithm is proposed in [17].
This system estimates the number of occupants in each room
of the monitored building. We have modified the proposed
system to estimate the binary occupancy and have used its
output to compare to our proposed PF output. The EKF
system in [17] handles the non-linearity in the occupancy
detection data by placing certain constraints on the model

Authorized licensed use limited to: Texas A M University. Downloaded on October 13,2022 at 16:10:43 UTC from IEEE Xplore.  Restrictions apply. 



EMAD-UD-DIN et al.: INDOOR OCCUPANCY ESTIMATION USING PARTICLE FILTER AND SLEEPIR SENSOR SYSTEM 17175

e.g. placing upper bounds and lower bounds on exit/entrance
rates, placing upper bounds on occupant flow from one room
to another, conservation on the number of people in the
building. We, on the other hand, use the PF to avoid making
any such assumptions about occupant flow. Moreover, indoor
occupancy over time is inherently a non-Gaussian estimation
problem which cannot be optimally modelled via a filter that
is based on Gaussian assumptions [18], hence a PF is the
solution of choice for handling the non-Gaussian nature of the
problem.

Among the Machine Learning (ML) based human tracking
systems, there exists literature such as [10] where machine
learning models are used to estimate human presence via PIR
sensors. However, several drawbacks exist for any machine
learning model to be able to perform optimally for human
presence monitoring. Such methods require the pre-requisite
of ground truth collection that is expensive and cannot be
done with high certainty in many cases. Real-time performance
is also hard to achieve in case online learning is desired
for such systems. Typically for such real-time performance,
high volume data-collection mechanisms along with high-end
computational capability need to be available onboard the
sensor nodes.

There are several other works that attempt to address the
human tracking problem using PIR sensors. For example,
in [19], binary sensed data obtained via PIR sensors attached
to the ceiling of a room is used to estimate multiple human
movement paths without a priori knowledge of the number
of humans in the room. This method cannot address the PIR
sensor’s weakness i.e., sensor triggers regardless of whether it
detects one or multiple people. Thus, although the method
dynamically estimates human positions using the weighted
centers of grouped fired infrared sensors, there is high uncer-
tainity involved when large number of human subjects present
in the observed area. Some relatively simple algorithms such
as [20] use PIR sensors to record past occupancy patterns and
then given a partially observed current day, the algorithm finds
the five best matches in the past. The algorithm then averages
the remainder of those matched days to compute probabilities
for future occupancy.

Another work which takes an approach like ours is pre-
sented in [21], presents a case study of applying particle filters
to location estimation for ubiquitous computing. This work
uses two different sensors i.e., PIR and ultrasonic sensors, and
fuses their output to establish human tracking. This approach
focuses on tracking individual location of human subjects
through a human motion model and static sensor models.
Our approach is more occupancy centric and does not cater
for individual human subject locations. Moreover, our sensor
model is dynamic and are based upon the continuously updated
correlation matrix between multiple sensors present in the
system. Another work presented in [22] uses the adjacency
relationships between sensor nodes and the exact positions
of the sensors are irrelevant. Here, the state of the system
is modeled via Hidden Markov Model and off-the-shelf PIR
sensors are used to collect observations. This model provides
an accuracy up to 89% but requires placement of many sensors
with minimal gaps in the coverage area.

Fig. 2. PF based human occupancy detection method flow chart.
Networked sensor nodes generate voltage, ambient temperature, and
PIR data. The voltage is converted to binary occupancy observations via
a thresholding algorithm. The node-level occupancy observations then
update a system-level occupancy estimate via a PF.

III. SYSTEM INPUT AND PRE-PROCESSING
ALGORITHMS

The overall system flowchart is presented in figure 2. The
raw SLEEPIR sensor observations are extracted from the
SLEEPIR sensor using a Bluetooth communication protocol.
The sensor and communication platform details are presented
in section 3. A. We present a brief overall algorithm flow
below that summarizes the flowchart presented in figure 2.

1. The raw sensor inputs which include SLEEPIR sensor
voltage, PIR sensor binary output and ambient tempera-
ture are collected from each sensor node via a Bluetooth
communication protocol.

2. Raw voltage values from SLEEPIR sensor are
pre-processed using a machine learning based threshold-
ing algorithm. This algorithm is detailed in section 3.B.
The thresholding algorithm interprets the raw SLEEPIR
sensor observations and outputs in binary whether the
sensor has detected human occupancy or not. The tra-
ditional PIR sensor output is already binary, so it does
not require preprocessing.

3. Since the binarized observations need to update a PF,
we design a sensor likelihood model to shape an update
for the PF. This sensor likelihood model merges the
output from both the SLEEPIR sensor and the traditional
PIR sensor into a single PF update. This model is
described in detail in section 4.A.

4. The PF receives these periodic updates from the like-
lihood function and estimates the probability of human
occupancy at each of the locations represented in the
PF state. The world constraints are embedded in the
likelihood and PF design thus the false positive or false
negative observations get filtered and a robust human
occupancy belief is estimated by the PF. Details of
the PF sensor model, state update and prediction are
presented in sections 4.B through 4.E.

A. Synergistic SLEEPIR Sensor Module
The SLEEPIR sensor utilizes a LC shutter [23] and can

significantly reduce the power consumption, weight, volume,
and noise level, compared to other sensors that use mechanical
choppers [1], [23], [24] for the purpose of stationary human
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Fig. 3. SLEEPIR sensor node.

detection. The synergistic sensor module includes a SLEEPIR
sensor alongside a traditional PIR sensor (EKMB1391111K,
Panasonic Inc), a Microcontroller Unit (EFR32BG13, Silicon
Labs), a driving circuit and two AA batteries connected in
serials (3V DC voltage supply). The field of view (FOV) of
the SLEEPIR and the PIR are 100(horizontal)×100(vertical)
and 110(horizontal) 93(vertical) degrees, respectively. The
maximum effective range of the sensor to detect stationary
occupants is 3 m. The SLEEPIR sensor includes a LC shutter,
and a PIR sensor without the Fresnel lens. SLEEPIR sensor
is different from traditional PIR sensor in sense that the
traditional PIR sensor has a Fresnel lens while the SLEEPIR
does not. SLEEPIR’s lab-made LC shutter consists of a
high birefringence LC mixture, LCM-1660 (LC Matter Inc.,
USA), sandwiched by two Germanium windows, each with
an anti-reflection (AR) coating on one side. Several other
design parameters for this sensor are provided in [10]. The
microcontroller unit (MCU) reads the analog signals from
both the SLEEPIR and the PIR sensors via analog-digital
converter (ADC) at a sampling frequency of 20Hz. After the
MCU collects the sensing signals, it sends out the observations
to the hub (Raspberry Pi) through a Bluetooth module for hard-
drive storage.

As shown in Fig 3., as part of the SLEEPIR sensor, a
pyroelectric sensing element, which is made up of pyroelec-
tric material, converts the change of heat flux to current.
If the radiation power received by the pyroelectric material
is W (t) = W0eiωt , which is modulated at frequency ω, then
voltage response Vout(t) for the preamplifier stage is in the
following form.

Vout (t) = R f bηp′ Aω

GT
(
1 + ω2τ 2

T

) 1
2
(
1 + ω2τ 2

E

) 1
2

W (t) (1)

Here, p′ is the perpendicular component of the pyroelec-
tric coefficient p. A is the area of the sensing element. η
represents the emissivity of sensing element; τT = H/GT
and τE = R f bC f b represent the thermal and electrical
constant, respectively. Here H, GT , R f b and C f b stand for
thermal capacity, thermal conductance, feedback resistance,
and capacitance, respectively. Commercial-of-the-shelf PIR
sensors usually consist of two or four sensing elements placed
in series with opposite polarizations. By covering the sensing
elements with the same polarization, the transmission change

Fig. 4. LSTM network architecture for SLEEPIR raw observation binary
classifier.

of the LC shutter would introduce noticeable voltage signals
from the PIR sensor. When the LC shutter, which is in front
of the PIR sensor, changes its transmission periodically, the
received radiation W (t) changes periodically as well. This in
turn causes the change of the output voltage Vout (t).

B. Machine Learning Based Thresholding Algorithm
Since sensor node generates time-series observations

consisting of SLEEPIR raw voltage output Vout (t)
(see section 3.A), Ambient temperature Tamb (t) and off-
the-shelf PIR sensor output P I R (t), we employ Recurrent
Neural Networks (RNNs) to classify whether the observation
indicate human occupancy or not. Recurrent neural networks
(RNNs), in comparison to the typical feedforward neural
networks (FFNNs), have been shown to achieve the highest
accuracy with time-series data [25], as they can process and
encode the sequential temporal information contained in a
time-series data. First, the incoming time-series data from the
sensor node is zero-centered and normalized. We then perform
input quantization step. Reason for choosing to quantize
input data is given in upcoming sub-section. We then divide
the input time-series into pre-determined sized observation
windows. Each window is then labeled as either occupied
or unoccupied based on the available ground-truth gathered
via web-camera installed testbed. Lastly, we train a Long
Short-Term Memory (LSTM) Network with the training data.
We deploy the trained network (shown in figure 4) so that the
network can distinguish between the observations indicating
occupancy versus those indicating non-occupancy. We detail
the thresholding algorithm in the following sub-sections.

1) Input Formatting and Quantization: The goal of
hand-tuned machine learning features used widely in
the literature, is to produce easily distinguishable values for
various data classes. A good feature remains invariant to
the slight changes in the input pattern for a particular class
and tends to produce roughly similar values for patterns
belonging to the same class. We achieve the same effect
by quantizing the input signal so that input signals that
bear slight differences with each other, are quantized into
similar looking patterns. Input quantization has a proven
positive impact on RNN accuracy [26]. So, we choose
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a quantization strategy that quantizes the sensor data to
three levels (rise/fall/no change). It may be noted that the
quantization used here is applied to both the training and test
data streams. Equation 2 outlines the quantization function
for the incoming observation at time t.

i f obst > obst+1 + ϵ 1 (rise)

i f obst < obst+1 − ϵ − 1 ( f all)

i f abs(obst+1 − obst ) ≤ ϵ 0 (no change) (2)

Literature suggests that a reasonable value for ϵ can be
(µa + σa/2) [27], where µa and σa are the mean and
variance for the input distribution. Thus, the value of
ϵ depends upon the distribution of observation elements
[Vpp1 (t) , Vpp2 (t) , Tamb (t) , P I R (t)].

2) Sliding Window Input Approach: We initialize the training
dataset obsT where each element is created by slid-
ing a fixed-horizon window of length l over the 4-D
training input time-series consisting of following elements
[Vpp1 (t) , Vpp2 (t) , Tamb (t) , P I R (t)]. We then initialize the
labels labelT where each element corresponds to each window
in obsT . We set an element to “occupied” if a surveillance
camera-based ground-truthT indicates that human subject was
present for more than 50% of observations in the FOV of
the sensor. Otherwise, the element is set to “unoccupied”.
A suitable window length (l) is found to be a critical parameter
that has a pronounced impact on the over network accuracy.
We will highlight this impact in the sub-section 3.B-4.

3) RNN Network Architecture: We use the well-cited deep
forward RNN model proposed in [28], which contains multiple
layers of recurrent units that are connected “forward” in
time. The model architecture is simple yet powerful enough
to produce reliable results over publicly available datasets
which consist of time-series data. The online LSTM model
shown in the figure 4 contains a single hidden layer of
16 recurrent neurons. During the evaluation phase, all RNN
models use 3, 6, 9 and 16 neurons depending upon the
experiment configuration. There are also 4 input neurons
to match the number of input time-series from the sensor
node i.e., [Vpp1 (t) , Vpp2 (t) , Tamb (t) , P I R (t)]. There are
two output neurons to match the output classes corresponding
to “occupied” and “unoccupied” status.

4) Performance Evaluation of LSTM and Other RNNs: We
performed a comprehensive search for a suitable RNNs. Our
analysis included testing the collected dataset over LSTM,
Bi-directional LSTM, Continuous-Time Recurrent Neural Net-
work (CTRNN), Minimal Gated Unit (MGU) [20] and Gated
Recurrent Unit (GRU) networks. We also varied the obser-
vation window length l over a reasonable range to see if
certain networks perform better than others. We found that for
l = 60 sec, the accuracy was highest across all architectures.
This indicates that the most effective discriminating features
exist over a period of 60 seconds. It is important to mention
here that SLEEPIR collects two consecutive observations over
a span of 60 seconds. Moreover, we also vary the number
of nodes for each network to see the impact of network size
over accuracy. We varied the network size to improve classifier
efficiency as the classifier is expected to perform in an online

Fig. 5. Accuracy comparison between different RNNs with varying
network size and observation window length l.

TABLE I
IMPACT OF OBSERVATION WINDOW SIZE AND NETWORK

ARCHITECTURE ON ACCURACY

pipeline (refer to figure 2 to see pipeline). Table I and figure 5
outlines the performance evaluation results for RNN clas-
sifiers. We observe that LSTM and Bi-LSTM outperformed
other RNNs in nearly all configurations. We selected LSTM
as our network of choice as it is relatively less expensive in
terms of resources. We encountered a relatively high ratio of
false negatives compared to false positives. Reasons for this
are discussed in section 4.

IV. PARTICLE FILTER DESIGN

After the system observations are binarized via the proposed
ML architecture, these observations are used to update a PF.
The elements of this filter that include likelihood model,
filter state, update and sampling modules, are detailed in the
remaining of this section.

A. Sensor Likelihood Model
We create a likelihood model based on the sensor coverage

parameters and inter-sensor correlation measure. An observa-
tion from a sensor node that includes a SLEEPIR and PIR
sensor, has a distribution of detection probabilities associ-
ated to the area that the sensor observes. This distribution
of detection probability is based on SLEEPIR sensor range
and field-of-view (FoV) experiments conducted in our earlier
works [10], [11]. These works also discuss in detail the sensor
installation height and orientation choices. Both FoV and range
of the sensor are listed in section 3.A. Moreover, as a result
of experimentation in [10], more specifically, we found that
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Fig. 6. SLEEPIR and PIR sensor multimodal detection probability
distribution is shown. The distribution works as a measurement update
for the SLEEPIR and PIR sensors. oi is the sensor footprint (∼ 4m2) for
the SLEEPIR sensor while si is the sensor footprint ((∼ 18m2) for the
PIR sensor.

for sensor installed at a height of 2.8 meters, the radius of
SLEEPIR footprint is 1.2 meters while the radius of concentric
PIR sensor footprint is 2.4 meters. These footprints are visually
represented in figure 6 where a sensor cone is also shown.
Each sensor generates a timestamped log of occupancy status
observations as follows.

DiS L E E P I R
t = {

(i, t) : iϵN, tϵR+}

Di P I R
t =

{
(i, t) : iϵN, tϵR+}

(3)

In the equation (3) (i, t) denotes that sensor i triggers at
time t. Figure 1 shows the set of locations denoted by index i
i.e., X1, X2, X3. Whenever an occupancy Di

t observation indi-
cates a human detection, we adjust the variance for bivariate
Gaussian update in the following way.

σ vS L E E P I R
t = 1

ρ iv
× σ vS L E E P I R

t

σ v P I R
t = 1

γiv
× σ v P I R

t (4)

Here matrices γ and ρ represent the Pearson-correlation
coefficient between smoothed sensor observations Di P I R

t and
DiS L E E P I R

t respectively. For example, ρii , would represent
the sensor observation correlation with itself which will always
be 1. In case sensor i is not correlated with sensor v, ρiv will be
near the value of 0. In other words, the inter-sensor correlation
matrices ensure that if sensor i triggers and it happens to have
its observations correlated to sensor v, the sensor model will
indicate the sensor v as a triggering sensor as well albeit with
a reduced amount of certainty. This amount depends upon
the level of correlation present between two sensors. It must
be noted that we smooth the observations by a certain time-
window τ Thus, the correlation represented in γ and ρ is a
correlation over a time-window τ .

The mean µi for update distribution for sensor i , is set to the
2D sensor coordinates in the map while unadjusted variance
σ i is set according to the following evaluation functions.

σ i S L E E P I R
t ∝

(
oi

si + li

)
, σ i P I R

t ∝
(

oi + si

li

)
(5)

We then define bivariateGaussianGen function so we can
generate a single mode bivariate gaussian distribution for
PIR sensor. We define mm BivariateGaussianGen function
to generate the bimodal Gaussian distribution for SLEEPIR
sensor. Both distributions are shown in figure 6 and function
definitions are listed in equation 6.

π i P I R = bivariateGaussianGen
(
µi , σ

i P I R
)

π i S L E E P I R1 = mm BivariateGaussianGen

×
(
µi , σ

i S L E E P I R
)

(6)

The variance of these gaussian distributions depend upon
the size of areas falling under each of their observation
cones. Thus, σ i S L E E P I R

t and σ i P I R
t represent the uncertainity

for measurement update distributions π i P I R and π i S L E E P I R .
σ i S L E E P I R

t and σ i P I R
t are directly proportional to the ratio of

area observed by the sensors to the total area of the room the
sensor is installed in.

B. Particle Filter State
The goal of the filter is to estimate the occupancy of the

observed area with a level of certainty. We choose to represent
the occupancy belief over the expanse of observed space via a
multimodal Gaussian bivariate distribution represented by Lt .
Variable Lt is defined as

Lt =
{
πuv

t
}

where, u = −limx + r,−limx + 2r, . . . , limx

and v = −limy + r,−limy + 2r, . . . , limy

Here u and v are indexes that run through the range
of weights π which is a bivariate probability density func-
tion (pdf) that represents the bivariate probability distribution
indicating the occupancy probability across the 2D spatial
expanse of area under monitoring. The area dimensions are
2limx × 2limy . Here changing the value of r (or resolution)
changes the size of domain of the distribution function.
We found empirically that an optimal value for r is 0.5 meters.
The value of r can impact the accuracy and execution effi-
ciency of the PF.

Each particle in the filter contains a varying multimodal
bivariate Gaussian distribution for the area under observation.
We initialize Q particles under certain initial conditions.

P j
t = ini tiali ze

(
L j

t

)
where j = 1, . . . , Q (7)

Each particle is initialized by adding normal random noise to
an initial hypothetical update U0 where no sensor is triggered.
The update U is the based on augmented sensor signals
received from all sensors in the system i.e., X1, X2or X3.
We use index j as a particle index invariably for the remaining
article.

C. Prediction Step
We know that the PF involves repetitive prediction and

update steps. In the prediction step, we first generate a
uniformly distributed random number h ∈ [0, 1] and then use it
to select sample P j

t−1 from all samples at time t −1 according
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to their weights wi
t . Then the prediction step is performed for

each P j
t as follows

L j
t+1 = L j

t + nspread

Here ns is a multimodal normally distributed random noise
that has modes centered at sensor locations µi . Essentially ns
factors in the variation present in the rate at which human
subjects move their positions from sensor to sensor within the
monitored area.

D. Update Step
For each particle P j

t , following steps update the particle
variable L j

t at each time-step via a Gaussian update Ut via
the following expression.

L j
t+1 = L j

t + δt+1(Ui
t+1 − L j

t ) (8)

Here,

Ut =
{
πuv

t
}

Variance σ i
t for Ut is already defined earlier in the section 3.B.

u and v have already been defined in while defining the PF
state. Moreover,

δt+1 = σ 2
t

σ 2
t + σ 2

t+1
(9)

Here if Ui
t+1 has high variance relative to Ui

t then δt+1 is
small thus it has little impact on value of L j

t+1. This ensures
that updates which have more chance of error are factored-in
less into our current belief L j

t+1.

E. Sampling Step
In the sampling step, we set weight for each particle and

then perform a weighted sampling to select particles for
prediction step. Weights for particles are set higher that have
smaller Bhattacharya distance [29] (measures the similarity
between two distributions). Since each particle, P j

t is com-
prised of bivariate distribution L j

t , we evaluate the bivariate
Bhattacharya distance between the update Ut and each particle
L j

t . Following step presents the probability of a particle to be
sampled via the Bhattacharya distance-based weights.

Prob j
(
w

j
t | Ut

)
= 1√

2πδt
= e

−
(Bhattayacharya

(
P j

t −Ut
)
)
2

2(δt )2

V. DISCUSSION

Sensor model-based updates are critical to the performance
of the proposed filter. These updates if modelled correctly
can optimally select and help propagate particles that are
very close to the real-world occupancy scenario. It is thus
useful to visualize and have a critical look at one example of
sensor model-based update. We can see this bivariate gaussian
update in figure 6. Since the sensors at locations X1 and
X2 have correlated observations, the update factors-in this
correlation and hypothesizes a more realistic update. We may
highlight here that correlation evaluation can be erroneous in

TABLE II
BRIEF DESCRIPTION OF METHOD PARAMETERS

case there is infra-red (IR) noise present in the observed space.
This noise can include electronic devices and objects that
efficiently absorb the heat radiated by human body. We can
also observe that particle sensor model heavily relies on certain
parameters that are rooted in real world environmental factors
and sensor limitations. A list of these tunable parameters is
provided in table II. Any changes in these parameters can have
a pronounced impact on PF accuracy.

VI. RESULTS

A. Dataset
We used a dataset that employs three SLEEPIR sensor

nodes. We deployed the nodes in two configurations as shown
in figure 1. Each node collects the observation every 30 sec-
onds. The SLEEPIR observations DiS L E E P I R

t were evaluated
using the raw SLEEPIR sensor voltage values. Certain thresh-
olds were used to remove noisy observations as per the litera-
ture presented in [10]. Surveillance cameras were used to label
the ground-truth. Data for a total of 15 days was collected.
We used 7 days to extract correlation matrices γ and ρ for
sensors. It may be noted here that distinct correlation matrices
were extracted for each of the floorplan scenario presented
in figure 1. The observation correlation between sensor pairs
within a scenario plays a crucial role in the performance of
particle filter-based occupancy detection. We observed that
the Peterson’s correlation coefficient evaluated over a longer
period was higher and thus produced better results. Figure 8
illustrates the relationship between the observation timespan
and evaluated correlation for a particular sensor pair. After
using 7 days of data to extract correlation matrices, we used
the remaining 8 days of test data for evaluation. We down
sampled the observations to 1 observation per minute. This
provided us with a total of 21600 observations within the
dataset. A total of 4 subjects (2 males and 2 females) were
employed to gather the dataset.

B. Accuracy Results
This work claims to minimize the sensor footprint and

deliver comparable human presence accuracy when compared
to statistical ML methods. We also studied the impact of
the number of sensors on the occupancy detection accuracy
and found that 3 sensor nodes suffice the 95% true positive
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Fig. 7. Inset label 1 shows the bivariate multimodal distribution for the
update produced by the sensor model when the subject is near sensor
X2. Inset label 2 shows the gaussian profile for the update when the
subject leaves the vicinity of sensor X2 and approaches sensor X1. Both
x and y axis are labeled in meters.

Fig. 8. Peterson’s correlation coefficient for the sensor pair X1 and X2

in scenario 2, is shown to increase as the timespan for observations is
increased from 1 day to 7 days.

TABLE III
IMPACT OF REDUCTION OF SENSOR NODES IN THE NETWORK

accuracy criteria mentioned in the US Department of Energy
SENSOR program outline [14]. The results of this comparative
experiment are listed in table III.

It may be mentioned here that we used the proposed
system-level PF algorithm for the experiment results shown in
table III. As a consequence of this experiment, we employed
observations from 3 nodes (3 PIR and 3 SLEEPIR sensors)
to compare the accuracy between sensor-level algorithm
(Statistical ML) [10] and the system-level algorithms
(EKF [19], PF and proposed PF with ML algorithms).
Sensor-level machine learning based occupancy detection
algorithm results presented in [10] are used as a baseline

Fig. 9. Accuracy comparison with baseline Statistical Machine Learning
Model. Accuracy improvement due to PF (green) and added improve-
ment via adding ML in the pipeline (light blue) is shown. The line graph
shows the percentage of occupied observations in the test-dataset.

TABLE IV
ACCURACY COMPARISON BETWEEN BASELINE

AND PROPOSED MODELS

Fig. 10. (Left) Mattress still emitting IR after 60 seconds have passed
since the subject left the bed. (Right) Top view of a chair, a laptop, and a
charger. Chair seat is still radiating IR after the human subject has left. All
IR sources mentioned here emit IR noise for a machine learning based
classifier.

for our analysis. We applied the EKF based networked
sensor estimation algorithm given in [17], to our dataset and
got inferior accuracy results compared to our proposed PF
algorithm. Not only, we do an accuracy comparison between
EKF and PF approach, we also highlight the performance
penalty of choosing to prefer PF over EKF to achieve
higher accuracy. Table IV shows the average processing
time for a single observation of window length 60 secs. The
execution times were measured on a Raspberry Pi 4 using a
64-quad-core Cortex-A72 (ARM v8) processor. We choose
not to involve the Machine learning layers in the performance
comparison as the computation cost for the ML inference
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Fig. 11. Confusion matrices showing the performance comparison between the state-of-the-art Statistical ML occupancy detection method and the
proposed method. The occupancy ground truth was collected via surveillance cameras.

is negligible. We have been able to show (See figure 9) that
the proposed Particle Filtering approach is able to provide
superior accuracy when compared to accuracy achieved via
an ML based statistical thresholding approach [10] and a
system-level EKF based occupancy estimation algorithm [31].

When compared to [10], we were also able to reduce
the number of sensors that are required to determine the
occupancy in the indoor space. The last two columns of
Table IV shows human occupancy accuracy via two input pre-
processing approaches (a) The system-level human occupancy
is established via a PF that uses a fixed threshold to convert
incoming sensor voltage into binary inputs. Let us term this as
“PF only” approach. (b) The system-level human occupancy
is established via the proposed machine learning classifier that
is described in section 3.B. Let us label this as “PF with
ML thresholding” approach. For both these approaches, the
system level-human occupancy is established if the PF output
probability density function results in at least a single occu-
pancy peak. Examples of such peaks are shown in figure 7 in
elevated temperature color shades. Figure 9, via the line graph,
also shows the percentage of observations in the test-dataset
where at least one occupant was present in the observed
area. We establish the presence of the occupant via ground

truth data. This percentage is important as the system does
not encounter significant detection errors whenever human
subjects are not around. We also tested the proposed method
using two test-bed scenarios (see figure 1). The first scenario
tests the method performance in space that is very restrictive
for the sensor’s range and correlation between the sensors is
low as each sensor is housed in an independent room. The
second scenario has more open space available to the sensors
and moreover two sensors although far from each other, are
housed within a same enclosure i.e., a large living room.

C. Results Discussion
Despite the robust performance at the system-level, deliv-

ered by the PF, false negatives remain a problem at the
sensor-level. The IR noise present in the environment is
mostly due to the heat transferred to the objects with which
the human body gets in contact. These keep emitting IR
radiation even after the human subject leaves the observed
area. Moreover, the IR radiation emitted by certain bodies that
have temperature and emissivity values similar to the human
body, acts as noise whenever we attempt to train a classifier for
occupancy decisions. Figure 10 shows examples of IR noise
within our testbed that we were able to discover during the
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experimentation. We were able to show false positives and
false negatives for each day of the test dataset as shown in
figure 11.

We must mention here that false positives generated due
to objects that acquire human body temperature are transient
as these objects cool down within minutes. As a future
effort, we are developing an ML training algorithm that
can discriminate between human body that maintains a near
constant temperature and objects that are in the process of
cooling down. It can be observed that the proposed method
consistently produces more false negatives compared to false
positives. This is obviously due to the IR noise present in the
environment. It can also be seen that certain false positives
are also produced. There are two primary contributors towards
false negatives. Firstly, the IR radiated by certain subjects is
simply not enough and due to small body size and clothing.
Secondly, certain PF parameters may not be tuned well to
suit the test-bed dynamics e.g., Gaussian noise parameters
ηt , ηspread may need to be hand-tuned to be sensitive to
the speed with which human subject approaches and leaves
the sensor vicinity. One of the possible solutions is adaptive
PF parameter tuning but further analysis and investigation
is necessary to propose a parameter tuning strategy. The
accuracy results are highly reliant on the correlation measure
between the observations from any two sensor nodes used for
experimentation.

VII. CONCLUSION

The proposed method delivers robust results in terms of
human occupancy detection while using a small number of
low-powered SLEEPIR and PIR sensors. The model exploits
the inter-location observation correlation between sensors to
generate close to the real-world measurement updates. More-
over, it exploits the temporal bounds on the position change
rate of human subjects within the environment. The novel
bivariate update distribution generated by the sensor model
ensures that realistic and not random hypothesis (particles)
are generated for the PF to sample from. Not only is this
method comparable to the contemporary statistical ML method
[10] but it also attempts to reduce the number of required
sensors to deliver the same accuracy for human presence
detection. The method is evaluated over two different testbeds
with different sensor configurations. The consistent accuracy
reveals the scalability of the proposed method. Moreover, the
method’s dependence over ground-truth to extract observation
correlation between different sensors is dependent on the accu-
racy of ground-truth annotation. As a future effort, alternative
methods can be explored to extract observation correlation
between different locations.
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