
Intel Serv Robotics

DOI 10.1007/s11370-016-0194-5

ORIGINAL RESEARCH PAPER

An autonomous stereovision-based navigation system (ASNS) for
mobile robots

Khalid Al-Muteb1
· Mohammed Faisal1 · Muhammad Emaduddin1

·

Mohammed Arafah1
· Mansour Alsulaiman1

· Mohamed Mekhtiche1
·

Ramdane Hedjar1
· Hassan Mathkoor1

· Mohammed Algabri1 · M. A. Bencherif1

Received: 31 August 2015 / Accepted: 13 February 2016

© Springer-Verlag Berlin Heidelberg 2016

Abstract Recently, stereovision has appeared in robotics

as a source of information for real-time mapping and path

planning. In this paper, an intelligent motion system for

mobile robots is designed and implemented using stereo-

vision. The proposed system uses stereovision as a primary

method for sensing the environment, and the system is able

to navigate intelligently in an indoor environment with vary-

ing degrees of obstacle complexity. It creates noiseless and

high-confidence 3D point clouds and uses these point clouds

as an input for the mapping and path-planning modules. The

proposed system was built by developing, enhancing, and

integrating various techniques, modules and algorithms. The

Stereovision-based Path-planning module is the integration

of three main enhanced techniques: (1) the multi-baseline

multi-view stereovision filter (MMSVF), (2) accurate floor

detection and segmentation (AFDS), and (3) the intelligent

gazing module (IGM). This Stereovision-based Path plan-

ning (MMSVF, IGM, and AFDS) was integrated with the

Fuzzy Logic Motion Controller (FLMC). All techniques,

modules and algorithms are implemented using a multi-

threaded and client–server-based architecture. To prove the

viability and robustness of our proposed system, we have

integrated all components of the system into a fully functional

mobile robot navigation system. We compared the perfor-

mance of the main modules with that of similar modules

in the literatures, and showed that our modules had better

performance. Testing the whole system is more important

than just testing each module individually. To the best of our

knowledge, the literatures lack such testing. Hence, in this

B Mohammed Faisal

Mfaisal@ksu.edu.sa

1 Robotics Lab, College of Computer and Information Sciences

(CCIS), King Saud University, Riyadh, P.O. Box 5117, 11543,

Saudi Arabia

paper we present the performance of our complete integrated

system in different environments using different parameters

and different architectures.

Keywords Mobile robot · Stereovision · 3D point clouds ·

Multi-baseline · Fuzzy logic

1 Introduction

Vision-guided mobile robotics (VGMR) systems are evolv-

ing with each passing year due to rapid gains in computa-

tional power and the reliability of vision sensors that can

be deployed on mobile platforms. The primary focus of

VGMR research is to allow a mobile robot to navigate in

an unstructured environment without collision. In recent

years, several researchers have looked at methods for setting

up autonomous mobile robots for navigation tasks. Among

these methods, stereovision-based navigation is a promising

approach for reliable and efficient navigation. Stereovision

cameras collect 3D data at a high frame rate and can also

capture color and texture as opposed to the relatively poor

performance of laser scanners. In this paper, the stereovision

camera is used for mapping and path planning. In addition,

the laser device and ultrasonic sensors are integrated to avoid

nearby dynamic obstacles during the navigation. The stere-

ovision part of this paper focuses on solving problems that

arise from shortcomings in local stereo-matching algorithms

such as the management of specular reflections and the lack

of discriminative image features and repetitive patterns [1]

within an indoor environment. Many local stereo-matching

methods strive to remain within the realm of real-time

algorithms while remaining accurate, e.g., AdaptGCP [2],

AD-Census [3] and SAD-IGMCT [4], to name a few. Instead

of presenting a completely new local stereo-matching tech-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11370-016-0194-5&domain=pdf


Intel Serv Robotics

nique, we propose a higher level filtering method that aims

at minimizing the noise and patchy 3D information gener-

ated by local stereo-matching techniques such as the Sum

of Absolute Difference, i.e., SAD. This higher level filtering

approach makes the proposed method suitable for filtering

point clouds generated by any local stereo-matching tech-

niques. To prove the viability and robustness of our proposed

filter, we have integrated our filter into a fully functional

mobile robot navigation system. A multi-baseline stereovi-

sion camera by Point Grey is used as the primary input sensor

for our proposed method. In this paper, an intelligent motion

system for mobile robots is designed and implemented. The

system is able to achieve an autonomous navigation within an

unstructured dynamic indoor environment. The system has

two main characteristics: it uses stereovision for mapping

and path planning and intelligent control for navigation. In

this system, we have designed and developed many systems

and modules and used them within the proposed system. The

most important parts of the system are the multi-baseline

multi-view stereovision filter, the stereovision-based gaze

control strategy, RANSAC segmentation-based floor detec-

tion and the fuzzy logic motion controller (FLMC) for indoor

navigation. The resultant system has the following fea-

tures: (a) stereovision-based navigation within an unknown

dynamic indoor environment, (b) adaptability to indoor light-

ing conditions via stereo-matching parameters and tuning

of point cloud filtering parameters, (c) the capability to

utilize previously built maps for navigation, (d) tuning of

path-planning and localization parameters, (e) a laser mea-

surement sensor-assisted system for emergency braking and

minor path adjustment, and the capability of moving through

multiple waypoints while performing fully featured naviga-

tion. We showed that the system could successfully navigate

autonomously in different environments (tight spaces and

small rooms, open spaces, and corridor). We compared the

performance of the system in these environments. The per-

formance parameters were accuracy, execution time, and

average robot speed.

This paper is organized as follows. In Sect. 2, a litera-

ture review is presented. The autonomous stereovision-based

navigation system (ASNS) is explained in Sect. 3; the com-

ponents of ASNS are presented in Sect. 4; Sect. 5 explains

the system experimentation and performance; robot speed

performance is presented in Sect. 6; real-time execution and

analysis of ASNS is presented in Sect. 7; comparison with

other works is presented in Sect. 8, and the conclusion is

given in Sect. 9.

2 Related work

Our stereo-based navigation system involves and integrates

many techniques, such as environment sensing, obstacles

and floor detection, mapping, and robot localization and

navigation. Therefore, we divided the related work into

the following categories: feature point detection, obstacle

detection, accurate floor detection, multi-baseline and stere-

ovision, use of active stereovision for map enhancement, and

navigation operation.

2.1 Feature point detection

A good feature point detector is absolutely essential for

vision-based navigation [5]. The 3D point cloud retrieved

via stereovision can be further filtered to detect good feature

points. An accurate approach used for the mapping appli-

cation is to detect 3D feature points within the point cloud

provided by the stereovision camera. Well-known techniques

for such purposes are point feature histograms (PFH) [6],

NARF points [7], spin-image [8] and eigen-CSS [9]. These

feature points help in the process of “point cloud registra-

tion” [6] and thus result in point clouds that are well aligned

(stitched), although these have been gathered at temporally

and spatially varying poses of a stereovision camera. If point

cloud registration is performed accurately, the resultant point

cloud can be used for effective navigation; otherwise, a com-

mon problem referred to as the “sliding-problem” [6] renders

the overall mapping process erroneous. 2D features do not

translate into 3D features but are similar in terms of their

persistence through the angle of approach, illumination con-

ditions, scale invariance and robustness to noise. 2D features

such as KLT, SIFT, SURF and Harris-Corners [9–12] are

widely used in 2D image processing. Corresponding 3D

points for 2D points are widely used in the literature as good

feature points, but success and results are limited in terms of

successful mapping applications [5,13].

2.2 Obstacle detection

An additional issue in stereovision-based navigation is obsta-

cle detection. The authors in [14] gave an introduction to an

obstacle detection approach based on stereovision that is pro-

posed for mobile robot navigation. The aim of the approach

is to detect a real environment to allow a mobile robot to

find a safe path even in complex scenarios. The novelty is

represented in terms of the two-stage perception structure.

The detection stage infers the relationship between obsta-

cles and the ground and determines the region of interest.

Based on this, the confirmation stage focuses on characteriz-

ing the contours and positions of obstacles and removing the

majority of artifacts. A vision-equipped apelike robot based

on the remote-brained approach was presented by Masayuki

et al. [15]. They present a new type of robot that has two

arms and two legs like an ape and is meant to study a vari-

ety of vision-based behaviors. The robot does not bring its

own brain within the body. It leaves the brain in the mother

123



Intel Serv Robotics

environment and talks with it by radio links. The brain is

raised in the mother environment, which is inherited over

generations. In this framework, the robot system can have a

powerful vision system in the brain environment. They have

applied this approach toward the formation of a vision-based

dynamic and intelligent behavior of a multi-limbed mobile

robot.

2.3 Accurate floor detection

Many methods emphasize the accuracy of 3D reconstruction

[1], but ground plane detection using minimal or noisy 3D

data [2] and detection of dominant planes in the environ-

ment is a detailed area in itself [3]. Among the surveys, very

few works suggest a method that detects both dominant and

subdominant planes along with the height-based classifica-

tion of obstacles. Among other obstacle detection methods,

some [4,16] completely ignore the significance of detecting

the ground plane and variations within it, while others [17]

use pixel-based region segmentation and classification tech-

niques that may or may not be able to classify floor anomalies.

2.4 Multi-baseline and stereovision

Multi-baseline stereo has been used in the past to optimize

grid maps. The first practical use of occupancy grids can

be attributed to Elfes [18]. Another use of occupancy grids

was applied by Murray et al. [19]. However, it suffers from

typical stereovision-based mapping shortcomings including

sensitivity to false positives when environment observation

time is short (due to a slower convergence rate while updat-

ing occupancy probability). In [1], an interesting occupancy

grid mapping technique is presented that uses both dense and

sparse point clouds from Stereovision and SLAM (simul-

taneous localization and mapping), respectively (structure

and motion). In this case, although the algorithm appears to

address false positives relatively well, there is a weakness

in encountering outliers, as no multi-view, multi-baseline

stereo-matching technique is utilized. Several other tech-

niques were found in the literature that attempt to utilize

multi-baseline stereo at the level of local stereo-matching or

multi-view stereo to filter noise, e.g., [20–23], but no tech-

nique was found to use a higher level multi-baseline filtering

or to use it in combination with multi-view stereo filtering.

2.5 Use of active stereovision for map enhancement

A highly enriched body of literature exists regarding gaze

techniques using various forms of movable camera mounts.

Bio-inspired camera gaze generation approaches top the

list, with noticeable works listed in [24–26]. Many of these

works focus on the ultimate goal of achieving human-head-

motion-like performance. Camera mounts bearing a variety

of degrees of freedom (DOF) configurations are employed

in these works. Some authors use vergence [24,27], zoom,

focus, aperture or baseline variance techniques, but these

techniques fail to render the flexibility and tight coupling

of gaze generation with the SLAM and path-planning mod-

ules. Some authors, such as Clady [26] and Nakagawa [28],

developed a vision system that has a pan tilt zoom (PTZ) cam-

era to track a moving object to enable the robot to perform

smooth pursuit of a target. In [29], however, a more relevant

localization and 3D information gain-sensitive gaze genera-

tion strategy is discussed. The authors present a gaze strategy

that strikes a balance between keeping the maximum possi-

ble number of features within the field of view (FOV) and

adjusting the camera pose so that maximum obstacle explo-

ration can occur. The approaches deployed in [30,31] use a

gaze generation decision system that works on the basis of a

utility function that balances the cost of exploring new ter-

rain with the utility of a changing camera pose toward future

positions that maximize information gain.

2.6 Navigation operation

Despite the advances in the field of autonomous robotics,

many problems still exist. Many of the difficulties are due

to the unknown dynamic environment. Various useful tech-

niques, such as fuzzy logic, genetic algorithms, and neural

networks are used to address an unknown and dynamic

environment. A fuzzy logic for indoor navigation has been

presented in [32]. The authors proposed how to use fuzzy

logic control for target tracking control of the wheeled mobile

robot (WMR). The authors focused on the navigation without

recognizing the obstacles; they simply used FLC for motion

control of the WMR. An online navigation for WMR is pre-

sented in [33]. In this paper, the authors used two fuzzy

logic controls to navigate the scout2 robot in an unknown

dynamic environment. The tracking fuzzy logic controller

is used to navigate the WMR to its target, and the obstacles

avoiding fuzzy logic controller is used to avoid the obstacles.

An indoor navigation system using fuzzy logic control is pre-

sented in [34]. The authors used the camera and fuzzy logic to

move the robot toward its goal. However, the authors concen-

trated on the navigation without taking into account obstacle

avoidance; they just use FLC for navigation. A real-time

fuzzy logic control scheme for target tracking by autonomous

mobile robots is proposed in [34]. This scheme used infrared

sensors and dual robots; the first WMR is the moving target,

and the second is the tracker [35]. In addition to fuzzy logic

control, a genetic algorithm and neural network have been

used to improve the control scheme. Fuzzy logic control and

the genetic algorithm are also used in [36] to find the optimal

parameters for the fuzzy logic. Four fuzzy logic controllers

are used to navigate the mobile robot in [37]. These four fuzzy

controls form a hierarchical control. Three fuzzy controllers

123



Intel Serv Robotics

C

Start

Perform ROI 

Extrac�on, ROI 

Sub-sec�oning and 

Obstacle detec�on 

Update the 

detected obstacles 

to the grid-map and 

apply mul�-baseline 

based intelligent 

filters

Apply A* based 

search to get free 

path towards 

Waypoint

Map

Waypoint reached. 

Move to next available 

Waypoint.

Check whether last 

planned path is s�ll 

free ?

Last Planned path 

not free

Robot Fuzzy 

Logic Mo�on 

Controller

Extract Point 

Clouds, a�ach 

localiza�on 

informa�on to 

observa�on

Capture Stereo Observa�on 

at two baselines

Calculate and Send 

target angle to Pan-

Tilt Unit to 

generate a Gaze

No Free Path 

Found

Angle

Pose(x,y,�)

Waypoint Reached

Free Path

Waypoint 

Repository
Free Path Free Path

Mobile Robo�cs 

Pla�orm

Le� and Right 

Wheel Speeds

Move to next 

Waypoint

Map

Fig. 1 Flowchart for ASNS

have been used for navigation and obstacle avoidance. One

of them is used as a supervisory controller.

3 The proposed autonomous stereovision-based

navigation system (ASNS)

In this section, we are going to give an overview of the ASNS

system and the interaction between its components, and in

the next section, we will explain each component in detail.

As we have mentioned, ASNS was built by integrating var-

ious algorithms and techniques built by the authors. The

stereovision-based path-planning module (MMSVF, IGM,

and SAFDS) was integrated with FLMC. Multiple third-

party pre-implemented algorithms (A* path planning, Sum

of Absolute Differences stereo-matching algorithm, statis-

tical outlier removal algorithm, band-pass filtering) were

integrated to form a complete system. A flowchart for the

resultant system is displayed in Fig. 1. ASNS needs many

parameters and data to initiate the navigation process. The

parameters are the path-planning parameters, point cloud

filtering parameters, stereo-matching algorithm parameters,

stereovision observation filtering parameters and the list of

waypoints (multiple target points). The system starts by

capturing multi-baseline stereovision observations gathered

using a Bumblebee stereovision camera. The 3D points

representing the environment are extracted from these obser-

vations. Basic stereo-matching filters are applied at this stage.

These filters include the texture validation mapping filter,

uniqueness validation filter, back and forth validation filter

[38], and surface validation filter [39]. These point clouds

are down-sampled to achieve real-time processing speed.

Finally, a region of interest (ROI) that ignores points above

a height of 1.2 m is selected and is passed onto the ROI

sub-sectioning sub-module. This sub-sectioning module is

necessary to reduce the time complexity required to per-

form point cloud manipulation. We were able to reduce

time complexity for various filtering algorithms. Next, the

sub-sectioned point clouds are passed over to the filtering

sub-module. This sub-module filters the 3D point cloud for

false positives that arise due to specular reflections and direct

exposure to highly bright indoor lights by our self-developed

MMSVF. These filtered point clouds are then passed through

an AFDS-based plane-fitting method to detect the floor and

123



Intel Serv Robotics

obstacles. Obstacles as small as wires, low-profile obsta-

cles and significant carpet deformities were successfully

detected by our self-developed floor segmentation method.

The detected obstacles are then accurately updated on a

global grid map. This grid map is used to plan the paths

using the A* algorithm when a path is requested by any

other module within the system. In this case, a set of x

and y coordinates called “Waypoints” are handed over to a

Fuzzy Logic Motion Control Module FLCM via a “Waypoint

Repository”. A “Waypoint Repository” is a file formatted in

a pre-agreed format that serves as a communication chan-

nel between FLMC and the rest of the system. These points

include the starting points, the target and all the intermediate

waypoints that represent the free path between the robot’s

current location and the target location. The motion module

(MM) of the FLCM is used to navigate the robot to its target

using the waypoints. However, in the case of nearby dynamic

obstacles (if the distance between the robot and the obstacles

is <50 cm), the obstacles avoidance module (OAM) is used

to avoid the obstacles. If the dynamic obstacles are distant,

the stereovision-based path-planning module will generate a

new path and send it to FLCM. The free path and the map are

also forwarded to a “Gaze Generation Module”. This mod-

ule is responsible for generating exploratory gazes toward

the free path and obstacles near the robot, based on the intel-

ligent gazing module. It must be noted that the observation

cycle is running continuously, and the map is updated after

each observation. This is performed to ensure the accuracy

of the map in case a path-replanning request is received from

any module.

4 Components of the ASNS system

The ASNS system consists of many modules. Each mod-

ule executes specific tasks. The interaction between all these

modules represents the whole system. ASNS is implemented

using a multi-threaded and client–server-based architecture,

as illustrated in Fig. 2. In this section, we are going to discuss

in detail each component and module in the ASNS system.

ASNS is divided into the following nine components or

modules:

Client PC Modules (On-board Mobile Robo�cs Development Pla�orm)

Server Modules

Thread 4Thread 3Thread 2Thread 1 Thread 5

Thread 3Thread 2Thread 1

Stereo Observa�on 

Capture Module

Fuzzy Logic Mo�on 

Controller Module

Intelligent Gazing 

Module

Data Compression and 

Transmission Module
Advanced Robot 

Interface for 

Applica�ons (ARIA) – 

(Legacy System)

Mapping Module
Path-planning 

Module

Data Compression and 

Transmission Module

ARIA Localiza�on 

Module 

(Legacy System)

Local Area Network

Stereo camera 

Interface (Legacy 

System)

Fig. 2 Architecture diagram for ASNS

123



Intel Serv Robotics

(A) Stereovision Initialization Module (SVIM)

(B) Multi-baseline Multi-view Stereovision Filter

(MMSVF) Module

(C) Accurate Floor Detection and Segmentation (AFDS)

(D) Stereo-Observation Capture Module (SOCM)

(E) Observation Read and Write Module (ORWM)

(F) Mapping Module (MM)

(G) Path-Planning Module (PPM)

(H) Fuzzy Logic Motion Controller (FLMC) Module

(I) Intelligent Gazing Module (IGM)

The client application onboard robot consists of a stereo

camera interface, a mobile robot control and communica-

tion interface, a point cloud compression and communication

module, an ARIA-based robot localization legacy module, a

stereo-observation capture module and an intelligent gaz-

ing module. Parallel processing is employed via distributing

all the modules over multiple separate OS level threads (dis-

played in Fig. 2). A GPU is also deployed over the client side

that assists in algorithm speed-up via the ArrayFire library

interface. Third-party libraries used in our system, i.e., the

mobile robotics programming toolkit [40] (MRPT) and point

cloud library (PCL), that serve as an execution backbone of

several algorithms also employ GPU cores independently.

The server application consists of mapping, path planning

and point cloud compression and communication. Parallel

processing is deployed both via Operating System and GPU

threads over the server machine. Distribution of modules over

the Operating System level threads can be observed in Fig. 2.

Third-party libraries deployed at the server end also include

the MRPT and PCL.

4.1 Stereovision initialization module (SVIM)

This module is the startup module for the system. This

module initiates the system execution by starting up the

stereo-observation capturing loop. Inputs to this module

include a host of parameters as listed in Table 1.

4.2 Multi-baseline multi-view stereovision filter

(MMSVF)

The module is implemented using client–server architecture.

A thin application works on the client side (mobile robot),

while another heavier server-side application works on the

server. The thin application is used to capture multi-view 3D

point clouds with two distinct baseline configurations (wide

(24 cm) and narrow (12 cm)) and to extract the ROI. Then,

compress the ROI point clouds and send them to the server.

After the capturing process, two ROIs are extracted from

these point clouds (P ′ : ROI for a narrow baseline z-axis:

0.1–2.5 m, and P ′′ : ROI for a wide baseline z-axis: 2.5–

5.0 m. Using these baselines, the FOV of the robot will be up

to 5 m as illustrated in Fig. 3.

The Bumblebee camera pose PoseBB and the robot

pose PoseRob are associated with each point cloud obser-

vation. This enables the method to reliably deduce local-

ization information. The point clouds received from the

client application are fed into an AFDS module. This

module is employed to distinguish the floor from the

obstacles. Thus, for two point clouds (P ′, P ′′), after the

execution of the plane-fitting technique, two stochastic

2D occupancy grid maps (G ′, G ′′), will be populated,

respectively. To perform multi-baseline consolidation, each

vertex Ux,y belonging to (G ′, G ′′) is loaded with fur-

ther information in addition to the usual probability value,

i.e.,

Ux,y =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

probuxy

centroid_xyzuxy

updatestatusuxy

confidenceuxy

. . . (1)

where

probuxy at time t = log

(

p
(

Ux,y = occupied|p1, . . . , pt

)

1− p
(

Ux,y = occupied|p1, . . . , pt

)

)

. . .

(2)

Equation 2 implements a binary Bayes Filter. Here,

Probu xyattimet is represented in log odds form [41] for time

t. p
(

Ux,y = occupied|p1, . . . , pt

)

represents the occupancy

probability given the measurement p (p qualifies as a point

that belongs to an obstacle). In Eq. 1, updatestatus indicates

that the particular vertex of the grid map received an update

from the current observation (currently received point cloud

from the sensor). centroid_xyzuxy contains the centroid loca-

tion of all 3D points contributing to the cell’s occupancy

probability. The confidence value can have three possible

states, i.e., low, medium and high.

The consolidation process is as follows:

1. At the beginning of the consolidation process, set

confidenceuxy for all vertices to low.

2. For all the vertices Ux,y in (G ′, G ′′), which receive

updates in the form of single or multiple points belong-

ing to an obstacle, the value of confidenceuxy is set to

medium.

3. For all the vertices Ux,y in G ′ or G ′′, for which the dis-

tance from the robot center is less than 1.5 m and which

also receive updates in the form of single or multiple

points belonging to an obstacle, the value of confidencexy

123



Intel Serv Robotics

Table 1 SVIM input parameter
SVIM input parameter Description of the parameter

Set of waypoints A set of waypoints (target points) that constitutes the

intended visit-plan for the robot

Image size/resolution The size of the image that is to be used as the initial

gray-scale image

Disparity range The range with which distance measurements are to

be performed

Mask size The coarseness of features that are to be matched

between images

Preprocessing Whether matching should be performed on

gray-scale or preprocessed images, such as edge

images

Surface validation parameters The parameters for the Surface Validation algorithm

to verify the correctness of matched-between

images

Regions of interest The region of the image on which processing should

be performed. This feature allows processing

speed-up

Sub-pixel interpolation Establishes correspondences to sub-pixel accuracy

allowing generation of more precise distance

measurements

Statistical outlier removal

algorithm parameters

The threshold parameters to perform sparse outlier

analysis and removal on stereovision-based point

clouds

Size of grid map The maximum size of the grid map used for path

planning should be defined by the user

Resolution of the grid map The dimension of each cell of the grid map must also

be defined by the user. The usual dimensions used

in the experiments were 5 × 5 cm or 10 × 10 cm or

15 × 15 cm

Robot radius To add more safety as the robot steers through an

indoor environment, the user is given an option to

specify the virtual radius of the robot for

path-planning purposes

Occupancy threshold The user specifies a value between 0 and 1 that helps

the path-planning module to decide the values to

consider as an obstacle within the grid map. For

example, a value of 0.4 will determine that all

values less than 0.4 must be considered as an

obstacle within the grid map

is set to high. This is performed because a wide baseline-

based stereo output produces very inaccurate 3D points

for the initial 1.5 m in front of the camera for the current

configuration of stereo-parameters that have been initial-

ized for the system.

4. Now, for two vertices a and b, where

a ∈ G ′, b ∈ G ′′,

do the following

i f
(

proba = medium
)

AN D
(

probb = medium
)

{ proba = high;

probb = high; }

Fig. 3 The visibility cone for the proposed module

5. Add vertices Ux,y to the final consolidated grid map G

for which probuxy
is high.

123



Intel Serv Robotics

Fig. 4 Bumblebee XB3 multi-baseline stereovision camera by Point

Grey Research, Inc

These ROI point clouds are decompressed and recon-

structed at the server to project and merge the multi-grid

maps. In this module, we used the Bumblebee XB3 camera,

displayed in Fig. 4, for the multi-baseline stereovision cap-

ture. The input parameters for MMSVF are listed in Tab. 2.

The output for MMSVF is listed in

Table 3. Details regarding the MMSVF are given in our

self-developed filter [42].

4.3 Accurate floor detection and segmentation (AFDS)

AFDS is a recursive RANSAC segmentation-based algo-

rithm that estimates the dominant and subdominant plane

models for all the navigable planes within a detected floor

or a ground plane. The algorithm also divides the input

point clouds intelligently into multiple regions of interest

for both efficiency and accuracy enhancement. The recursive

estimation approach for determining plane parameters helps

to detect multiple planes within each region. Among other

benefits of this approach, reduction of search space size for

the estimation of plane parameters stands out as the most

striking result of this work. This region-wise plane estima-

tion approach also helps to reduce the computational load by

selectively dropping less significant floor sections from the

estimation process. The floor estimation technique coupled

with sensor response functions for two different point cloud

generators further investigates the robustness of the method

when deployed on two distinct sensors, i.e., the RGB+D

sensor and a stereovision camera. In our experiments, we

Table 3 MMSVF output

MMSVF output Description of the parameter

High-confidence grid map cells MMSVF determines the grid-cells

that are most likely to have

obstacles. Such grid-cells are

called high-confidence grid map

cells

segment navigable floor planes in real time using a slowly

moving sensor. The location and geometrical parameters of

the floor planes are stored in a database that serves to recre-

ate the 3D environment and also helps in optimizing the

plane-fitting problem. The planes are associated to a grid

map, which serves as a path-planning reference to the mobile

robot in our experiments. The results of the floor detection

and the precision of floor anomaly detection are compared

sensor-wise and with the ground truth defined by obstacle

heights and configuration. The real-time performance of the

proposed algorithm was analyzed using a well-documented

RGB-D SLAM dataset. The steps of AFDS are displayed in

Fig. 5, and the details regarding the AFDS are given in [43].

4.4 Stereo-observation capture module (SOCM)

This module consists of many steps. The first step initializes

the stereo-parameters, the second step is the acquisition of

raw stereo images, and the third step is image rectification and

stereo-matching via the sum of absolute intensity differences

(SAD) algorithm. The fourth step is to apply a band-pass

filter, which is applied to the resultant 3D point cloud to

filter out the unnecessary data. The creation of camera and

stereo-processing context is performed during every iteration

for each of the two baselines. This particular step is the most

time-consuming step in the whole system, as we will see in

Sect. 7.

Table 2 MMSVF input

parameter
MMSVF input parameter Description of the parameter

Obstacle detection range for narrow baseline The filter needs this range as the Bumblebee camera

narrow baseline can detect obstacles between 0.9

m and approximately 10 m. A narrow baseline is

well suited to obstacles less than 5 m away

Obstacle detection range for wide baseline The filter needs this range as the wide baseline of the

bumblebee camera can detect obstacles between

0.9 m and approximately 10 m. The wide baseline

is well suited to obstacles farther than 3 m

Overlap range between both baselines User needs to decide the overlap range in which

many of the noisy points reside. Usually, the

majority of noisy points lies between 3 and 6 m

123



Intel Serv Robotics

C

2. Extract ROI

3. Split ROI into 

uniform sub-

regions and apply 

execu�on priority

4. Apply Sta�s�cal 

Outlier Removal 

filter to reduce 

outliers for each 

sub-region

5. For each sub-

region run RANSAC 

plane fi�ng 

method to obtain 

dominant plane

1. Capture Point 

Cloud at loca�on X,Y 

and Theta

5.1

Resubmit 

residual points 

for further plane 

detec�on un�l no 

points 

remain

Plane 

orienta�on 

and loca�on 

repository

6. Assign detected 

planes to the map 

Fig. 5 Floor detection and segmentation flowchart

4.5 Observation read and write module (ORWM)

This module comprises two sub-modules that execute in an

inter-leaved fashion. One sub-module named the “Socket-

based communication sub-module” consists of socket initial-

ization for the purpose of communication between modules

that reside on the server and those that reside on the robot.

This sub-module also sends and receives socket-based sig-

nals between server and client (robot) for coordinating shared

file access. The other sub-module is known as the “file-based

observation write and read module”. This module consists of

file-read and file-write statements. These statements trans-

fer stereo-observation data between the server and the client

(robot).

4.6 Mapping module (MM)

The mapping module is responsible for mapping 3D observa-

tions from stereovision cameras to a 2D map. This mapping

must be reliable; thus, a series of band-pass, statistical outlier

removal and other custom-designed filters must be applied to

minimize false positives. An accurate pose is required from

the localization module for observation integration into the

map. The resultant 2D map is path-planning ready and is

updated after the capture of each observation by the SOCM.

A binary Bayes filter-based map update algorithm, detailed

in [42], is responsible for the map update process.

4.7 Path-planning module (PPM)

The path-planning module uses the Streaming SIMD Exten-

sions 2 (SSE2) optimized A* algorithm for path-planning

purposes. This algorithm requires the current 2D location of

the robot, the radius of the robot and the 2D target location to

be able to compute the free path. Path planning is performed

when obstacle information in the map is updated in a way

that affects the planned path. Path planning is performed for

the first time between the current position of the robot and

the target point while assuming that the entire map consists

of free space. Later, with the collection of camera observa-

tions, obstacles are inserted in the map, which may or may

not require path planning. The output of PPM is listed in

Table 4.

4.8 Fuzzy logic motion controller (FLMC)

In this module, three fuzzy logic controllers are integrated to

navigate the mobile robot in an environment cluttered with

obstacles. A configuration setting module (CSM) is used to

rotate the mobile robot when an error is detected within the

current heading and the target heading. The motion module

(MM) is used to navigate the robot to its target. The obsta-

cles avoidance module (OAM) is used for obstacle avoidance

behavior for nearby and dynamic obstacles. This module

adjusts the individual speeds for the robot wheels in a real-

time control loop.

123



Intel Serv Robotics

Table 4 PPM output

Output of PPM Description of the parameter

Set of planned intermediate

waypoints until the next

waypoint

PPM generates the set of planned

intermediate waypoints that

represent the free path between

the current robot position and the

upcoming waypoint. The

difference between waypoints

and planned intermediate

waypoints is that the former is

provided by the user, while the

latter represents the free path

generated by the SVIM

Updated grid map SVIM generates a raw bitmap

representing the values within the

grid map. This bitmap resolution

depends upon the resolution of

the grid map used within SVIM.

In a particular case, each grid

map cell represents 25 cm2. A

30 × 30 m area will be

represented by a bitmap image of

600 × 600 pixels

The inputs of MM are the angle between the direction

of the robot to the target and the x-axis (error angle) and

the distance between the robot and the target. The outputs

of MM are the velocities of the left and right motors. MM

has been implemented using seven membership functions for

both inputs (the angle error and distance error). Left velocity

LV and right velocity RV of the motors are the output of the

MM. LV and RV in the MM have been implemented using

seven membership functions.

OAM is used for avoiding static and dynamic obstacles

(the distance between the obstacle and robot is less than

20 cm). The inputs of OAM are the distance between the left,

front, and right sides of the robot and the obstacles (LD, RD,

and FD, respectively). These distances are acquired using

laser devices and ultrasonic sensors. We use the laser to take

advantage of its high accuracy and the ultrasonic sensor to

take advantage of the higher coverage area for any obstacle.

LD is from degree 50 to 30, FD from degree −30 to 30,

and RD from degree −50 to −30. The outputs of the OAM

module are the velocities of the left LV and the right RV of

the motors. LV and RV in AM have been implemented using

three membership functions. CSM is used to overcome the

problem of the existence of close intermediate points (if the

distance between the robot and the point is <50 cm). CSM

is used to rotate the robot before the motion. The input of

CSM is the rotate angle at which the robot should rotate.

The outputs of CSM are the velocities of the left and right

motors. A flowchart for the FLMC is displayed in Fig. 6.

Details regarding the FLMC are given in our self-developed

controller [44].

The input and the outputs parameters of FLMC are listed

in Tables 5 and 6, respectively.

4.9 Intelligent gazing module (IGM)

This module is used to determine the optimal rotation angle

for the stereovision camera during navigation. This mod-

ule consists of two sub-modules. One module consists of

statements that send commands to a pan tilt unit (PTU) via

the serial port and introduces time delays to let the motion

of the PTU complete toward a desired gaze angle. These

gaze angles are computed in the other module that performs

this computation on the basis of planned-path points and

obstacle locations within the map. The active vision mod-

ule is deployed to achieve detection and tracking of moving

objects, in addition to mapping applications. We have used

active vision as a way to maximize FOV as well as to observe

critical obstacles to optimize path planning [45]. The path-

planning module of our navigation system is tightly coupled

with the gaze control system (GCS). This is performed to

make the stereovision camera observe the upcoming path

ahead of the mobile robot. In addition, the GCS is able to

direct the camera toward the most critical obstacles that have

a high impact on future path-planning decisions.

The intelligent gazing module has the following features

that have a significant impact on the overall system.

• The major goal of this module is to enhance obstacle

avoidance while moving toward the target point via the

shortest path under a given scenario.

• This module improves mapping accuracy and thus con-

sequently improves path-planning accuracy as well.

• The gaze is focused toward the immediately planned path

in front of the robot during path-specific gaze behavior.

This ensures that the free path is constantly checked for

the presence of any dynamic obstacles.

• The gaze is also focused on the closest obstacle detected

within the range of a 0.9–5 m radius. This ensures that

most critical obstacles are observed for the maximum

possible amount of time.

Details regarding the IGM are given in the self-developed

modules [45].

5 System experimentation and performance

The system was tested using PowerBot as the robot plat-

form. PowerBot is equipped with four different types of

sensors: laser range finder, sonar sensor, bumper sensor, and

stereovision, as shown in Fig 7. The system path-planning

and execution performance was tested successfully many

times for different navigation tasks that were as long as

123



Intel Serv Robotics

Start

Waypoint 

Repository

Check for 

available 

Waypoint

Waypoint

Waypoint 

Reached

Waypoint 

available

Waypoint Reached. 

Move to Next available 

Waypoint.

Yes

Near Dynamic 

Obstacles

No

Obstacles 

Avoidance Module 

(OAM)

Yes

Error in Robot 

Heading

No

Configura�on 

Se�ng Module 

(CSM)

Yes

Ac�on accumulator

Le� and Right 

Wheel Speeds

Le� and Right 

Wheel Speeds

Mobile Robo�cs 

Pla�orm

Le� and Right 

Accumulated 

Wheel Speeds

Error in Heading

Mo�on Module 

(MM)

No

Le� and Right Wheel Speeds

Waypoint

Distance to Waypoint

Fig. 6 Detailed flowchart of fuzzy logic motion controller

Table 5 FLMC input parameter

FLMC input parameter Description of the parameter

Set of waypoints FLMC requires a set of planned

intermediate waypoints (target

points) from the SVIM

Threshold distance for

obstacle detection

for laser measurement

sensor

The user specifies range values in

centimeters for the front laser

sensor cone, right laser cone and

left sensor cone Only objects

detected in this range are

considered obstacles

Table 6 FLMC output

FLMC output Description of the parameter

Left wheel and right

wheel speed commands

Speeds of the left and right wheels

of the robot. These speeds

directly contribute to a smooth

trajectory-following and obstacle

avoidance behavior

Localization The robot kinematic model and a

higher level soft computing are

used to determine the robot pose

after the motion commands are

executed on the robot

123



Intel Serv Robotics

Fig. 7 Robot platform

25 m (the available environment). The environment for the

experimentation was unknown, dynamic and indoors with

varying degrees of obstacle complexity. A snapshot of the

results captured from some of these experiments is dis-

played in Fig. 8. Figure 8 illustrates the path-planning and

trajectory-following outputs of ASNS. As observed, the robot

moved from the start point to the target point in corri-

dor “a”, inside room “b”, and in open indoor space “c”

using the proposed system (ASNS). During the movement,

many techniques, modules and algorithms (SVIM, MMSVF,

AFDS, SOCM, ORWM, PPM, FLMC, and IGM) interacted

as illustrated previously. The Red arrows indicate the cam-

era gaze angle, the blue circle indicates the actual robot

path, and the distance is in centimeters. The navigation per-

formance indicators of 20 trials for the “Average System

Iteration time” are listed in Table 7. During the movement

of the robot, when the path is free of obstacles or when

the robot is near to the target, it starts to gaze backward to

explore the whole environment to be ready for future navi-

gation.

The experimental result indicates that large obstacles tend

to be detected much earlier than smaller ones, thus reduc-

ing the need for path re-planning. The “Average System

Iteration Time” parameter represents the time consumed

in between and includes the observation capture from the

Stereo-Observation Capture Module and the generation of

motion on a free path from FLMC. This parameter is

highly dependent upon the number of 3D points gener-

ated by the SOCM. The time required to filter and map

the observation is directly proportional to the number of

incoming 3D points for each observation. Open space envi-

ronments with few obstacles required the least average

iteration time, while small rooms with a relatively high num-

ber of obstacles required the maximum average iteration

time.

Table 8 shows the accuracy with respect to ground truth of

the proposed system. As can be seen in Table 8, the maximum

error of all scenarios was 0.05 m.

6 Robot speed performance

The “Average Robot Speed” in Table 9 was generally

recorded to be the highest for open spaces with a low number

of obstacles. The same parameter was noted as the lowest for

an environment cluttered with a medium number of obstacles

within tight spaces and small rooms.

The parameter has fewer values for experiments involv-

ing a medium number of obstacles for both open spaces and

tight spaces because smaller obstacles are detected after a

significantly larger number of stereo-observations compared

to the large number of obstacles. Such a situation gives

rise to more frequent path re-planning. There is an aber-

ration to the preceding statement, i.e., when experiments

are conducted within the corridor environment, slightly

large average speed values were recorded. This happens

because the system design limits the camera focus to the

obstacles ahead instead of generating frequent exploratory

gazes. Such behavior results in increased observation time

for a medium number of obstacles lying on the corri-

123



Intel Serv Robotics

Fig. 8 Path-planning and

trajectory-following outputs of

ASNS in a corridor (a), inside

room (b) and open indoor space

(c)

dor floor. A low number of obstacles and open spaces

usually require minimal path re-planning; thus, the aver-

age recorded speed for the robot was the highest in the

experiment. Speed profiles for experiments conducted in

various indoor environments are displayed for reference in

Fig. 9.

7 Real-time execution analysis of ASNS

Important highlights listing the most time-consuming pro-

gramming constructs for each module are recorded to analyze

the execution time of the proposed system. The system is

GPU enabled, and its real-time execution analysis is pre-

123



Intel Serv Robotics

Table 7 Average system

iteration time of path-planning

and trajectory-following

performance indicators for

ASNS

Environment Obstacle type Average system iteration time (std. dev)

Tight spaces and small rooms Low number of obstacles 1734 ms (241.7)

Medium number of obstacles 1861 ms (412.2)

Large number of obstacles 2079 ms (492.6)

Open spaces Low number of obstacles 1321 ms (243.1)

Medium number of obstacles 1455 ms (352.9)

Large number of obstacles 1592 ms (377.2)

Corridor Low number of obstacles 1648 ms (286.1)

Medium number of obstacles 1690 ms (413.9)

Large number of obstacles 1854 ms (441.7)

All listed experimental times are calculated by factoring out the speed-up via the GPU on board the robot

Table 8 Position accuracy of

navigation performance with

respect to ground truth

Scenario Actual target position (meter) Robot target position (meter) Absolute error (meter)

x y x y x y

Fig. 8-a 14 −8.5 13.95 −8.48 0.05 0.02

Fig. 8-b 5 0 5.02 0.02 0.02 0.02

Fig. 8-c 14 −3 13.97 2.97 0.03 0.03

Table 9 Path-planning and

trajectory-following

performance indicators for

ASNS. All listed experimental

times are calculated by factoring

out the speed-up via the GPU on

board the robot

Environment Obstacle type Average robot speed (std. dev)

Tight spaces and small rooms Low number of obstacles 0.16 m/s (0.121)

Medium number of obstacles 0.13 m/s (0.091)

Large number of obstacles 0.15 m/s (0.049)

Open spaces Low number of obstacles 0.46 m/s (0.096)

Medium number of obstacles 0.28 m/s (0.055)

Large number of obstacles 0.35 m/s (0.031)

Corridor Low number of obstacles 0.44 m/s (0.067)

Medium number of obstacles 0.33 m/s(0.042)

sented in Table 10. A snapshot of the robot speed profile

outputs of ASNS for some results captured from some exper-

iments are displayed in Fig. 9. The speed of the robot during

the movement is measured from start point to target point in

corridor “a”, inside room “b”, and open indoor space “c”. The

darker shades of blue indicate the high speeds. The lighter

shades of blue denote lower speeds. The distance is in cen-

timeters.

The specifications of the client-end and server-end machines

and GPU system are provided below.

Client-end PC Specifications:

Processor: Intel Core i7

RAM: 16 GB

Hard Drive: 40 GB Solid-State Drive

Operating System: Windows Embedded Standard 7, 64-

bit

Motherboard Specs:

Supports 3rd Gen. Intel® 22 nm CPUs and 2nd Gen.

Intel®

Client-end GPU Specifications:

GPU: NVIDIA QUADRO K-4000

CUDA Parallel-Processing Cores: 768

Server-end PC Specifications:

Processor: Intel® CoreTM i7 2630QM Processor

RAM: 12 GB DDR3 1333 MHz SDRAM

Operating System: Windows 7 Professional, 64-bit

Motherboard Specs: Intel® HM65 Express Chipset

8 Comparison with other works

As explained previously, the designed system was built with

integrated various enhanced modules, algorithms and tech-

niques built by us. Therefore, it is difficult to compare the

whole system with another system. Therefore, we are going

to compare some main modules of the designed system with

another work.

123



Intel Serv Robotics

Fig. 9 Robot speed profile

outputs of ASNS in a corridor

(a), a small room (b) and open

indoor space (c)

8.1 MMSVF

In Fig. 10, we compare the grid maps generated (filtered) by

our MMSVF with those generated by Triclops SDK (Point

Grey Research Inc.). Fig. 10a provides the grid maps gen-

erated by MMSVF, while Fig. 10b provides the grid maps

generated by Triclops SDK. Comparing Figs. 10a and 9b,

we can see that the grid map generated by Triclops SDK

loses fidelity at the cost of noise removal, which indicates

the high performance of the proposed filter.

As mentioned previously, we gather stereo point cloud

sequences through the stereovision camera mounted on top

of a mobile robot. These sequences are gathered while the

robot is in motion, and the robot/camera pose is bundled

with each observation. The observations are processed online

by the proposed method in real time. The maximum speed

123



Intel Serv Robotics

Table 10 The Real-time execution analysis of the system

SOCM (std. dev) ORWM (std. dev) FLMC (std. dev) IGM (std. dev) MM (std. dev) PPM (std. dev)

Individual runtime of

modules

1047 ms (202.8) 719 ms (190.1) 306 ms (62.5) 59 ms (11.7) 175 ms (43.3) 85 ms (29.3)

Contribution to

single iteration runtime

during threaded execu-

tion (parallel processing)

1047 ms (202.8) 232 ms (74.2) – – 125 ms (27.2) 51 ms (11.5)

Contribution to single

iteration runtime dur-

ing both GPU-based and

threaded execution

725 ms (111.2) 193 ms (69.4) – – 92 ms (21.6) 32 ms (8.2)

Fig. 10 Stochastic occupancy grid maps. Left mapping output from

ICP-SLAM after application of proposed filter. The map contains

minimal noise without the loss of fidelity. Right mapping out from

ICP-SLAM after application of surface size, texture validation and

back–forth filter by Triclops SDK, Point Grey Research. The map loses

fidelity at the cost of noise removal. a Grid maps generated by MMSVF.

b Grid maps generated by Triclops SDK

achieved by the robot during navigation is 0.47 m/s. For com-

parison, the ground truth for the arena is also displayed in

Fig. 11.

We compared the depth estimation accuracy of the pro-

posed MMSVF module with the work of Yoon et al. [46].

The comparison results are shown in Table 11, from far 3 m

Fig. 11 Ground truth for the occupancy grid map

to near 0.5 m. The proposed MMSVF module shows better

results than the compared one [46]. The maximum error of

the proposed MMSVF was 0.04 m while in the compared

method was 0.2 m.

8.2 IGM

The results of the IGM module are compiled with a shape

that is comparable in the work of Aniket and Kuipers

[47], where number of frames required for detection of

an obstacle serves as a criterion to judge the performance

of stereo-mapping algorithm. This compilation is shown

in Table 12. The number of required frames was only

recorded for obstacles located between 2.5 and 3.5 m from the

camera.

8.3 AFDS

An accuracy comparison of the ground truth of the mea-

sured obstacle of the proposed method AFDS on two sensors

(bumblebee and kinect sensor) is shown in Table 13. Twenty

experiments were conducted with varying obstacle con-

figurations for different (xres, yres), where the proposed

method was executed for each sensor separately. The maxi-

123



Intel Serv Robotics

Table 11 Depth estimation

accuracy comparison
Proposed MMSVF Compared method [46]

Real depth (m) Estimated depth (m) Errors (m) Estimated depth (m) Errors (m)

3 2.97 0.03 2.94 0.06

2.5 2.52 0.02 2.47 0.03

2 2.04 0.04 2.05 0.05

1.8 1.79 0.01 1.87 0.07

1.7 1.71 0.01 1.79 0.09

1.5 1.51 0.01 1.60 0.10

1.3 1.31 0.01 1.47 0.17

1 1.02 0.02 1.20 0.20

0.5 0.49 0.01 0.68 0.18

Table 12 IGM frames

comparison
Nature of obstacle Number of frames

required (proposed strategy)

Number of frames

required ([46])

Textured (more than 50 % area detected) 4 7

Non-textured (more than 50 % area detected) 5 8

Textured (more than 90 % area detected) 7 9

Non-textured (more than 90 % area detected) 21 32

Table 13 AFDS accuracy
xres, yres Obstacle distance from sensor Average error in maximum detected height

<3 m >3 m<5.5 m

3, 2 Kinect sensor ± 0.51 cm ± 5.31 cm

Bumblebee camera ± 0.39 cm ± 2.49 cm

4, 3 Kinect sensor ± 0.44 cm ± 4.97 cm

Bumblebee camera ± 0.31 cm ± 2.21 cm

8, 6 Kinect sensor ± 0.44 cm ± 4.88 cm

Bumblebee camera ± 0.32 cm ± 2.10 cm

12, 9 Kinect sensor ± 0.40 cm ± 4.74 cm

Bumblebee camera ± 0.29 cm ± 1.99 cm

Table 14 The real-time

execution analysis of the AFDS
Sequence name Observations (frames) Overall system runtime (s) Algorithm runtime (s)

FR1 360 745 427 383

FR1 Room 1332 795 568

FR1 Floor 1214 742 485

mum height of each obstacle was measured manually and

served as ground truth. The errors between the detected

maximum heights of the grid map vertices and the ground

truth were calculated. These average errors are shown in

Table 13.

A real-time performance comparison of the AFDS was

analyzed using a well-documented RGB-D SLAM dataset

[48] with different sequence name and observations, as

illustrated in Table 14. The AFDS requires on average approx-

imately 0.47 s of processing time per observation.

9 Conclusion

In this paper, an intelligent motion system for mobile robots is

designed and implemented using a multi-threaded and client–

server based architecture. The system is able to achieve

an autonomous navigation within an unstructured dynamic

indoor environment. The system has many characteristics:

stereovision-based navigation within an unknown dynamic

indoor environment, adaptability to indoor lighting condi-

tions via stereo-matching parameters and point cloud filtering

123



Intel Serv Robotics

parameter tuning, the capability to utilize previously built

maps for navigation, path-planning and localization tuning

via parameters, a laser measurement sensor-assisted system

for emergency braking and minor path adjustment, and the

capability to move through multiple waypoints while per-

forming fully featured navigation. We showed that the main

modules of our system had better performance than the sim-

ilar modules in the literatures. A major contribution of this

paper is that we presented the performance of the proposed

ASNA system, integrating all modules, in different environ-

ments using different parameters and architectures.

Acknowledgments The authors extend their appreciation to the

Deanship of Scientific Research at King Saud University for funding

this work through Research Group No. RG-1437-018.

References

1. Lategahn H, Derendarz W, Graf T, Kitt B, Effertz J (2010) Occu-

pancy grid computation from dense stereo and sparse structure and

motion points for automotive applications. In: Intelligent vehicles

symposium (IV), 2010 IEEE, pp 819–824

2. Shi C, Wang G, Yin X, Pei X, He B, Lin X (2012) High-accuracy

stereo matching based on adaptive ground control points. Image

Processing, IEEE Transactions on 24(4):1412–1423

3. Mei X, Sun X, Zhou M, Jiao S, Wang H, Zhang X (2011) On

building an accurate stereo matching system on graphics hardware.

In: IEEE international conference on computer vision workshops

(ICCV Workshops), pp 467–474

4. Ambrosch K, Kubinger W (2010) Accurate hardware-based stereo

vision. Comput Vis Image Underst 114(11):1303–1316

5. Lemaire T, Berger C, Jung I-K, Lacroix S (2007) Vision-

based slam: stereo and monocular approaches. Int J Comput Vis

74(3):343–364

6. Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms

(FPFH) for 3D registration. In: IEEE international conference on

robotics and automation, 2009. ICRA’09, pp 3212–3217

7. Steder B, Rusu RB, Konolige K, Burgard W (2011) Point feature

extraction on 3D range scans taking into account object bound-

aries. In: IEEE international conference on robotics and automation

(ICRA), pp 2601–2608

8. Johnson AE, Hebert M (1999) Using spin images for efficient object

recognition in cluttered 3D scenes. IEEE Trans Pattern Anal Mach

Intell 21(5):433–449

9. Stiene S, Lingemann K, Nuchter A, Hertzberg J (2006) Contour-

based object detection in range images. In: Third international

symposium on 3D data processing, visualization, and transmission,

IEEE, pp 168–175

10. Ledwich L, Williams S (2004) Reduced SIFT features for image

retrieval and indoor localisation. In: Australian conference on

robotics and automation, 2004. Citeseer

11. Schleicher D, Bergasa LM, Barea R, Lopez E, Ocaa M, Nuevo

J, Fernandez P (2007) Real-time stereo visual slam in large-scale

environments based on sift fingerprints. In: IEEE international sym-

posium on intelligent signal processing, 2007. WISP 2007, pp 1–6

12. Sinha U (2010) Sift: scale invariant feature transform. AI Shack

14, Harvard

13. Bais A, Sablatnig R, Gu J, Khawaja YM, Usman M, Hasan

GM, Iqbal MT (2008) Stereo vision based self-localization of

autonomous mobile robots. In: Sommer G, Klette R (eds) Robot

Vision. Springer, Berlin, pp 367–380

14. Ghayalod MP, Hall EL (1992) Intelligent robot control using

omnidirectional vision. In: Applications in optical science and

engineering, 1992. International society for optics and photonics,

pp 573–584

15. Inaba M, Kanehiro F, Kagami S, Inoue H (1995) Vision-equipped

apelike robot based on the remote-brained approach. In: 1995 IEEE

international conference on robotics and automation. 1995. Pro-

ceedings, pp 2193–2198

16. Matthies L, Shafer S (1987) Error modeling in stereo navigation.

J IEEE Robot Autom 3(3):239–248

17. Fazl-Ersi E, Tsotsos JK (2009) Region classification for robust floor

detection in indoor environments. In: Kamel M, Campilho A (eds)

Image analysis and recognition. Springer, Berlin, pp 717–726

18. Murray D, Jennings C (1997) Stereo vision based mapping and

navigation for mobile robots. In: 1997 IEEE international con-

ference on robotics and automation. Proceedings 1997, pp 1694–

1699

19. Elfes A (1989) Using occupancy grids for mobile robot perception

and navigation. Computer 22(6):46–57

20. Kuhn A, Hirschmüller H, Mayer H (2013) Multi-resolution range

data fusion for multi-view stereo reconstruction. In: Weickert J,

Hein M, Schiele B (eds) Pattern Recognition. Springer, Berlin, pp

41–50

21. Milella A, Reina G, Foglia MM (2013) A multi-baseline stereo

system for scene segmentation in natural environments. In: 2013

IEEE international conference on technologies for practical robot

applications (TePRA), pp 1–6

22. Gallup D, Frahm J-M, Mordohai P, Pollefeys M (2008) Variable

baseline/resolution stereo. In: IEEE conference on computer vision

and pattern recognition, 2008. CVPR 2008, pp 1–8

23. Wang H, Xu J, Guzman JI, Jarvis RA, Goh T, Chan CW (2001)

Real time obstacle detection for AGV navigation using multi-

baseline stereo. In: Rus D, Singh S (eds) Experimental robotics

VII. Springer, Berlin, pp 561–568

24. Pahlavan K, Eklundh J-O (1992) A head-eye system-analysis and

design. CVGIP Image Underst 56(1):41–56

25. Samson E, Laurendeau D, Parizeau M, Comtois S, Allan J-F, Gos-

selin C (2006) The agile stereo pair for active vision. Mach Vis

Appl 17(1):32–50

26. Cindy X, Collange F, Jurie F, Martinet P (2001) Object tracking

with a pan-tilt-zoom camera: application to car driving assistance.

In: IEEE International Conference on Robotics and automation.

Proceedings 2001, ICRA, 2001 IEEE, pp 1653-1658

27. Milios E, Jenkin M (1993) Torsional eye movements. In: IEEE

International Conference on Act Robot Vis Camera Heads Model

Based Navig React Control, vol 6, p 51

28. Nakagawa M, Adachi E, Takase R, Okamura Y, Kawai Y, Yoshimi

T, Tomita F (2008) Gaze tracking control using an active stereo

camera. Int Arch Photogramm Remote Sens Spat Inf Sci 37(Part

B3b):387–392

29. Kühnlenz K, Lidoris G, Wollherr D, Buss M (2007) On foveated

gaze control and combined gaze and locomotion planning.

INTECH Open Access Publisher

30. Stachniss C, Grisetti G, Burgard W (2005) Information gain-based

exploration using rao-blackwellized particle filters. In: Robotics

science and systems, vol 2, pp 65–72

31. Bourgault F, Makarenko AA, Williams SB, Grocholsky B, Durrant-

Whyte HF (2002) Information based adaptive robotic exploration.

In: IEEE/RSJ international conference on intelligent robots and

systems, pp 540–545

32. Rashid R, Elamvazuthi I, Begam M, Arrofiq M (2010) Differ-

ential drive wheeled mobile robot (WMR) control using fuzzy

logic techniques. In: 2010 Fourth Asia International Conference

on mathematical/analytical modelling and computer simulation

(AMS), pp 51–55

123



Intel Serv Robotics

33. Faisal M, Hedjar R, Al Sulaiman M, Al-Mutib K (2013) Fuzzy

logic navigation and obstacle avoidance by a mobile robot in an

unknown dynamic environment. Int J Adv Robot Syst 10

34. Raudonis V, Maskeliunas R (2011) Trajectory based fuzzy con-

troller for indoor navigation. In: 2011 IEEE 12th International Sym-

posium on computational Intelligence and Informatics (CINTI), pp

69–72

35. Li T-H, Chang S-J, Tong W (2004) Fuzzy target tracking control of

autonomous mobile robots by using infrared sensors. IEEE Trans

Fuzzy Syst 12(4):491–501

36. Narvydas G, Simutis R, Raudonis V (2007) Autonomous mobile

robot control using fuzzy logic and genetic algorithm. In: 4th IEEE

Workshop on intelligent data acquisition and advanced computing

systems: technology and applications, 2007. IDAACS 2007, pp

460–464

37. Cupertino F, Giordano V, Naso D, Delfine L (2006) Fuzzy control

of a mobile robot. IEEE Robot Autom Mag 13(4):74–81

38. Fua P (1991) Combining stereo and monocular information to

compute dense depth maps that preserve depth discontinuities. In:

International joint conference on artificial intelligence (IJCAI)

39. Murray D, Little JJ (2000) Using real-time stereo vision for mobile

robot navigation. Auton Robot 8(2):161–171

40. Głąbowski M, Musznicki B, Nowak P, Zwierzykowski P (2012)

Shortest path problem solving based on ant colony optimization

metaheuristic. Image Process Commun 17(1–2):7–17

41. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics, vol 1.

MIT press, Cambridge

42. Khalid Almutib ME, Mansour Alsulaiman, Hedjar Ramdane and

Ebrahim Mattar (2014) Reliable multi-baseline stereovision filter

for navigation in unknown indoor environments. In: Paper pre-

sented at the 29th international conference on computers and their

applications (CATA), Las Vegas, Nevada, USA

43. Emaduddin M, AlMutib K, AlSulaiman M, Hedjar R, Mattar E

(2012) Accurate floor detection and segmentation for indoor nav-

igation using RGB+ D and stereo cameras. In: Proceedings of

the 2010 international conference on image processing, computer

vision, pattern recognition (2012)

44. Faisal M, A-M K, Hedjar R, Mathkour H, Alsulaiman M, Mattar

E (2014) Behavior based mobile for mobile robots navigation and

obstacle avoidance. Int J Comput Commun 8

45. Khalid Almutib ME, Mansour Alsulaiman, Hedjar Ramdane,

Ebrahim Mattar (2014) Smart stereovision based gaze control for

navigation in low-feature unknown indoor environments. In: 5th

intelligent systems, modeling and simulation (ISMS), Langkawi,

Malaysia

46. Yoon H-J, Hwang Y-C, Cha E-Y (2010) Real-time container

position estimation method using stereo vision for container auto-

landing system. In: 2010 International conference on control

automation and systems (ICCAS), pp 872–876

47. Murarka A, Kuipers B (2009) A stereo vision based mapping algo-

rithm for detecting inclines, drop-offs, and obstacles for safe local

navigation. In: IEEE/RSJ international conference on intelligent

robots and systems, 2009. IROS 2009, pp 1646–1653

48. Sturm J, Magnenat S, Engelhard N, Pomerleau F, Colas F, Burgard

W, Cremers D, Siegwart R (2011) Towards a benchmark for RGB-

D SLAM evaluation. In: Proceedings of the RGB-D workshop on

advanced reasoning with depth cameras at robotics: science and

systems conference (RSS), Los Angeles, USA, p 3

123


	An autonomous stereovision-based navigation system (ASNS) for mobile robots
	Abstract
	1 Introduction
	2 Related work
	2.1 Feature point detection
	2.2 Obstacle detection
	2.3 Accurate floor detection
	2.4 Multi-baseline and stereovision
	2.5 Use of active stereovision for map enhancement
	2.6 Navigation operation

	3 The proposed autonomous stereovision-based navigation system (ASNS)
	4 Components of the ASNS system
	4.1 Stereovision initialization module (SVIM)
	4.2 Multi-baseline multi-view stereovision filter (MMSVF)
	4.3 Accurate floor detection and segmentation (AFDS)
	4.4 Stereo-observation capture module (SOCM)
	4.5 Observation read and write module (ORWM)
	4.6 Mapping module (MM)
	4.7 Path-planning module (PPM)
	4.8 Fuzzy logic motion controller (FLMC)
	4.9 Intelligent gazing module (IGM)

	5 System experimentation and performance
	6 Robot speed performance
	7 Real-time execution analysis of ASNS
	8 Comparison with other works
	8.1 MMSVF
	8.2 IGM
	8.3 AFDS

	9 Conclusion
	Acknowledgments
	References


