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ABSTRACT 

Indoor occupancy detection and tracking are essential elements of occupant 

behavior research. One of the recent advancements in this area is the use of networked 

sensor nodes to create a more comprehensive occupancy picture of an indoor space where 

multiple sensor nodes can identify human presence while delivering superior accuracy 

compared to a system that relies on standalone sensor nodes. Standalone sensor nodes 

often produce false negative and positive detections, due to sensor coverage gaps and 

shortcomings in the underlying occupancy sensing technologies.  

This research aims to improve indoor occupancy detection and tracking 

performance using network-level sensor fusion and occupancy estimation techniques. 

These techniques exploit the redundant, correlated, and complementary information in the 

time-series data that networked occupancy sensor nodes produce. Using a combination of 

node deployment configurations and indoor environments, several occupancy detection 

and tracking methods are proposed which can potentially contribute towards applications 

areas like Occupant comfort, Indoor health, Energy and space utilization, Building Design, 

and Occupant safety & security.  

The presented work focuses on optimizing networked nodes-based occupancy 

detection and tracking pipeline. Some notable elements of a typical pipeline include data 

collection and labeling strategies, sensor models, data fusion techniques, node-level and 

network-level machine learning algorithms, and estimation algorithms. Each sensor node 
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can use one or multiple node-level occupancy sensors technologies such as microphones, 

ambient temperature, humidity, carbon dioxide (𝐶𝑂2), and passive infrared (PIR) sensors. 

The main contributions of this dissertation include: (i) A node-level on-device 

lifelong (ODLL) classifier is proposed that continuously learns evolving occupancy 

patterns over time; (ii) A network-level algorithm that exploits the inter-node spatial 

adjacency information and as well as observation correlations between the nodes; (iii) A 

1-minute resolution occupancy tracking system that exploits the node adjacency and node 

correlation constraints to filter-out the unreachable occupancy states. 
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1.  INTRODUCTION  

 

Over the years, progress has been made toward developing methods and 

algorithms to detect and track human occupancy in enclosed spaces. A varying number of 

occupancy sensing nodes mounted with a combination of sensor modalities have been 

used within indoor spaces to estimate occupancy. These nodes act in standalone or 

networked mode depending upon the application and end-user preferences regarding the 

occupancy detection or tracking solution. The networked sensor nodes create a more 

comprehensive occupancy detection and tracking system where multiple sensors can 

identify human presence with enhanced accuracy compared to a system that relies on 

standalone sensor nodes. This chapter aims to present the background and motivation for 

using networked sensor nodes and their associated network-level sensor fusion and 

estimation techniques. This chapter also mentions the scope and objectives of the research 

carried out for this dissertation. 

1.1.  Background and Motivation 

1.1.1. Conventional Node-level Occupancy Detection and Tracking Systems 

Occupancy detection, in simple terms, means whether there is a human presence 

in a spatial unit during a period. Thus, occupancy detection is attributed to a spatial unit 

like a zone, room, floor, or building, as well as to a temporal unit, such as a second, minute, 

hour, day, week, or month. The resolution for these units depends upon the application for 

which occupancy information is needed. For example, to evaluate daily energy utilization 

of a building, the temporal resolution can be as large as a day, while the spatial unit can 

encompass the whole building. However, the same units are not valid for an application 
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like HVAC control as temperature may need to be adjusted over a short duration, like a 

minute, and regulated over a smaller space like a room instead of the whole building. It 

should be highlighted here that occupancy sensor nodes are limited by underlying sensing 

technology regarding the range in which they can sense human presence. This range can 

be referred to as spatial coverage. For example, the maximum range of motion-based 

occupancy sensors is 20 meters [5], which represents the farthest edge of the sensor 

detection cone that defines the spatial coverage of a typical motion sensor. Moreover, 

sensor nodes are also limited regarding the frequency and duration in which observations 

are recorded. The time during which the sensors gather observations can be called 

temporal coverage. The temporal coverage depends on the sensor’s sampling frequency, 

node’s duty cycle, and communication polling/push rate. 

 Besides occupancy detection, occupancy tracking is another crucial element of 

occupant behavior. Occupancy tracking is performed by detecting occupancy over time 

Figure 1. (Left) Parts of the space heater exhibit similar IR radiation to the human 

body generating false positives. (Right) An occupant with a body covered in a blanket 

during sleep is not detected by the PIR sensor leading to false negatives. 

Occupancy 
sensor node 

Occupancy 
sensor node 
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and maintaining the history of movement of the occupants in space. Since research 

conducted for this dissertation aims to preserve occupant privacy, individual occupants 

are not tracked. Still, it is the occupancy status of the spatial unit that changes from zone 

to zone (or room to room), that is tracked. Similar to occupancy detection, the temporal 

and spatial units need to be defined for occupancy tracking. The noticeable difference here 

is that multiple sensor nodes are required to track the movement of occupants between 

rooms or zones (each installed with at least one sensor node).   

1.1.2. Gaps in Node-level Occupancy Detection 

Conventional occupancy detection systems need to be improved; these depend on 

the underlying sensing technology used by the sensors. For example, PIR sensors, the most 

commonly used technology for occupancy sensing, especially for lighting control [6], 

produce false negatives by failing to detect stationary  occupants [7]. PIR sensors also 

suffer from a phenomenon known as IR shielding [8]. This happens when certain clothing, 

Figure 2. (Left) Apartment location depicted along sunrise and sunset angles on Apr 15, 2022. 

(Right) Temperature profile recorded by each node for the same day. Livingroom (Lr) is exposed to 

sunlight IR via large glass sliding door thus warmer. Kitchen (Kch) used for cooking during the day. 

Bedroom 2(Br2) is also exposed to sunlight during daytime, but HVAC cooling is more effective due 

to its small size. Alternating periods of blue indicate HVAC setpoint triggers from noon until 

evening. 
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wearable materials or obstructions inhibit IR radiation from occupants from reaching the 

PIR sensor. This causes false negatives to occur. It has been observed in literature [9] that 

occupants with shorter heights and with less area of exposed skin, are less likely to be 

detected via PIR sensors due to lower amount IR radiation reaching the sensor. This is 

because pyroelectric detectors with PIR sensors respond to changes in the 7-to-14-micron 

portion of the EM spectrum, which happens to be the range of the IR energy radiated by 

human skin[10]. PIR sensors are also prone to errors that lead to false positives. An 

example can be warm tap water that has the potential to reach human body temperatures 

and can present a human-like IR radiation profile to the PIR sensor [3]. Examples of IR 

sources that can potentially cause false positives and negatives are shown in figure 1. 

Among other sensors, ambient temperature sensors produce observations that are 

correlated [11] with occupancy in a relatively smaller and confined space, but in practice, 

these observations are also dependent on factors like HVAC setpoints, which can be 

triggered due to the outdoor temperature, which is a completely unrelated phenomenon to 

occupancy. Changes in ambient temperature in a 2 bed 2 bath apartment caused due to 

HVAC setpoints on summer day are shown figure 2. In short, each indoor environment is 

unique in terms of the observable environmental variables including ambient temperature, 

humidity, 𝐶𝑂2 levels, IR radiation noise and the IR radiation profile for the occupants. 

Since occupancy tracking is a high-order property of the occupancy detection [6], the 

occupancy detection error produced by standalone sensor nodes also impacts the 

occupancy tracking accuracy. An obvious solution is to work towards improving the 

underlying sensing technologies for each sensor modality. Yet another practical approach 
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is to consider the multivariate time-series nature of the occupancy data received from 

multiple networked sensor nodes. The following section highlights this approach. 

1.1.3. Networked Sensor based Occupancy Detection and Tracking 

The use of multiple sensing nodes is a common technique for improving sensing 

accuracy and reliability. The availability of a greater volume of timestamped raw data can 

make the inferences and predictions more accurate and robust than if these were achieved 

via simple aggregation techniques like, average, maximum, minimum or a union of 

outputs of standalone sensor nodes[12].  

Data fusion techniques are most common and have been widely employed in 

literature to overcome shortcomings of standalone occupancy sensor nodes. Whenever a 

node-level failure or communication breakdown occurs, robust inferences can be achieved 

through networked sensor nodes via fusion. This can happen as nodes may redundantly or 

complementarily observe common observation zones. Occupancy detection methods that 

implement various fusion approaches can be divided into three broad categories. We 

closely adopt the categorization done in [13]. Regardless of the category, any fusion-based 

occupancy detection method would use the following standard properties[12] of a fusion-

based approach to their advantage. 

1.1.3.1.  Cooperative 

Multiple networked sensor nodes under a fusion strategy which ensures occupancy 

detection in an area which is larger than spatial coverage of any one sensor node, is called 

a cooperative fusion strategy. This strategy is ideal for exploiting the spatial relationships 
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between the neighboring zones. Proposed methods described in Chapters 4 and 5 make 

extensive use of this strategy. 

1.1.3.2.  Redundant 

Sensor or communication failures are commonplace with networked occupancy sensor 

nodes[14], especially if the distance between the communicating nodes is near the 

maximal range of the employed radio communication technique or protocol. A fusion 

strategy that ensures sensor data delivery despite node or communication failure, is called 

as a redundant fusion strategy. This is generally possible via having redundant nodes or 

redundant communication modules onboard the sensor nodes.  

1.1.3.3.  Complimentary 

Under a wide variety of scenarios, multiple sensor modalities are required to detect 

occupancy as a single sensor modality is not able to detect occupancy as the sensor is 

unable to detect signal that it is sensitive to. For example, 𝐶𝑂2 sensor has been used 

Figure 3. (Left) SLEEPIR sensor node is shown. (Right) Sensor voltage response 𝐕𝐨𝐮𝐭 for both 

SLEEPIR and traditional PIR sensors are compared. Spatial coverage area for the node is 

shown as well. Here lighter shade represents the coverage area for 2x SLEEPIR sensors with 4m 

diameter, while the darker grey shade indicates the spatial coverage area for the PIR sensor with 

5m diameter. 
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historically to detect stationary occupancy as PIR based motion sensor fail to detect such 

occupancy. Any fusion strategy that uses multiple sensing modalities to reliably detect 

occupancy is known as a complimentary fusion strategy. Proposed methods in Chapter 3, 

4 and 5 make limited use of this strategy. 

1.1.4.  Networked Sensor Node 

There exist a wide variety of sensors, IoT based processing platforms and 

communication standards employed in literature, that are used to evaluate occupancy 

detection and tracking methods for networked sensors. However, this study does not aim 

to evaluate underlying sensor node technologies. We choose most widely deployed[6], 

non-intrusive, privacy-preserving PIR sensor-based nodes to evaluate the proposed 

occupancy detection and tracking methods. These nodes are termed as SLEEPIR[7] nodes 

and can detect stationary occupancy. 

As shown in figure 3, each SLEEPIR sensor node includes two SLEEPIR sensor 

modules. Each sensor module consists of an analog PIR sensors (EKMC2691111K, 

Panasonic Inc) mounted behind an infrared shutter made of PDLC and sandwiched by two 

Germanium windows that can significantly reduce the power consumption, weight, 

volume, and noise level, compared to mechanical choppers[15-17]. Optimal design 

parameters of such a sensor are provided in our previous work[18]. Onboard, Silicon Labs 

MCU with model no. EFR32BG13, reads the analog signals from both the SLEEPIR and 

the PIR sensors via ADC at a sampling frequency of 20Hz. Afterwards, the collected 

values are sent out as observations to a server IoT device (Raspberry Pi) via BLE 

connection for permanent memory storage. Alongside SLEEPIR sensor modules and 
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MCU, a traditional PIR sensor (EKMB1391111K, Panasonic Inc), a PDLC driving circuit 

and two AA batteries connected in serials (3V DC voltage supply) are also present 

onboard. 

Within the analog PIR sensor, a pyroelectric sensing element, which is made up of 

pyroelectric material, converts the change of heat flux to current. If the radiation power 

received by the pyroelectric material is 𝑊(𝑡) = 𝑊0𝑒
𝑖𝜔𝑡, which is modulated at frequency 

𝜔, then voltage response 𝑉𝑜𝑢𝑡(𝑡) for the preamplifier stage is in the following equation 

form. 

𝑉𝑜𝑢𝑡(𝑡) =
𝑅𝑓𝑏𝜂𝑝

′𝐴𝜔

𝐺𝑇(1+𝜔
2𝜏𝑇
2)
1
2(1+𝜔2𝜏𝐸

2)
1
2

𝑊(𝑡)                    (1) 

Here, 𝑝′ is the perpendicular component of the pyroelectric coefficient 𝑝. 𝐴 is the 

area of the sensing element. η represents the emissivity of sensing element; 𝜏𝑇 =

𝐻/𝐺𝑇 and 𝜏𝐸 = 𝑅𝑓𝑏𝐶𝑓𝑏  represent the thermal and electrical constant, respectively. Here 

𝐻,𝐺𝑇 , 𝑅𝑓𝑏 and 𝐶𝑓𝑏 stand for thermal capacity, thermal conductance, feedback resistance, 

and capacitance, respectively. Commercial-of-the-shelf PIR sensors usually consist of two 

or four sensing elements placed in series with opposite polarizations. By covering the 

sensing elements with the same polarization, the transmission change of the PDLC shutter 

would introduce noticeable voltage signals from the PIR sensor. When the PDLC shutter, 

which is mounted in front of the PIR sensor, changes its transmission periodically, the 
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received radiation 𝑊(𝑡) changes periodically in synchronization as well. This in turn 

causes the change of the output voltage 𝑉𝑜𝑢𝑡(𝑡). 

1.1.5. Gaps in Network-level Occupancy Detection 

All the fusion implementation categories mentioned in methods, have namely (1) 

Analytical methods, (2) Knowledge based methods, (3) Data-driven methods have their 

own set of shortcomings that either emanate from node-level detection errors or are artifact 

of the particular network-level occupancy detection method.  

The Analytical methods study physical behavior of occupants and its impact on 

the indoor environment. These methods exploit the relationship between environmental 

variables and human presence to derive occupancy decisions. For example, [19] presents 

an occupancy detection method based on various indoor climate sensor data trajectories. 

Data from CO2 and VOC sensors were used to evaluate vacancy, while data from PIR 

sensors were used to judge occupancy. No prior information about the testbed or dataset 

prerequisites is required by this method. Despite relying on three different sensor 

Figure 4. (Left) A deployment diagram showing locations and spatial coverage of ceiling mounted 

SLEEPIR sensor nodes. (Right) A time-signal chart showing occupancy output from individual 

nodes in blue and a union of outputs in red. The green signal represents the ground truth. It is 

shown that only one node-level error can introduce a network-level false positive. In contrast, all 

node-level outputs must be erroneous to produce a false negative network-level estimate. 
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modalities, this method reported as much as 43.5% false negatives and 11.8% false 

positives for a dormitory occupancy scenario.   

The Knowledge-based methods, also known as expert systems, use specialized 

knowledge represented by rules to solve complex problems. A good example is a Finite 

State Machine based State Switch algorithm[20] that utilizes SLEEPIR nodes. Yet, it 

cannot robustly handle the node-level detection errors and a transition to a wrong state 

would be made in case a false occupancy determination was made at the node-level. 

Similarly, any network-level aggregation algorithm, e.g., union of outputs of standalone 

sensor nodes, will fail to handle a false positive detection determination made at the node 

level.  

The Data-driven methods include the following sub-categories of methods.  

(i) Statistical & deep learning ML methods 

(ii) Bayesian inference methods 

(iii) HMM-based methods 

ML-based network-level occupancy detection methods that statistical process 

features extracted from raw sensor-node observations can handle uncertainty but have 

limited application due to the pre-requisite of acquiring labeled training dataset [21]. Not 

only automated occupancy labeling itself is resource intensive for such datasets but also 

achieving a class balance between “occupied,” and “un-occupied” label classes is an 

equally challenging task [21]. It has also been shown that typical ML algorithms only 

accept training data with fixed sizes; thus a networked node occupancy detection problem 

which can have a variable number of sensor nodes (due to occasional communication or 
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hardware failure), would need to reformat the data into a fixed format which often times 

requires data fusion to happen prior to ML training phase[21, 22]. Furthermore, deep 

learning ML models need large datasets to train. Thus, it is infeasible to re-collect a large 

amount of data to retrain to handle any novelty in the occupancy patterns [23]. In the 

Bayesian inference methods sub-category, node-level occupancy estimation is usually 

done via ML algorithms or Knowledge-based methods, while the network-level 

occupancy estimation is performed by fusing the node-level assessment through a 

Bayesian inference-based framework[22]. Although this approach has produced accuracy 

up to 93% [21] in uncontrolled experiments, generating ML inference for each node, on-

device is resource intensive. 

Among all the network-level occupancy detection frameworks found in the 

literature, two major gaps emerged. Firstly, in general, there was a near linear relationship 

between the number of sensors and the monitored area in order to maintain the accuracy 

of the solution[21], secondly, virtually all of the network-level occupancy detection 

frameworks required historical sensor data (may it be data correlation or training datasets) 

to be able to filter out the noisy node-level observations. The latter of the gaps is one of 

the major roadblocks in the way of widespread adoption of network-level occupancy 

detection methods. Figure 4 shows an example deployment diagram showing locations 

and spatial coverage of ceiling mounted SLEEPIR sensor nodes. Moreover, it shows a 

time-signal chart showing occupancy output from individual nodes, 
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1.2. Methodology 

The research effort started with a comprehensive literature review exercise that 

encompassed the state-of-the-art occupancy estimation methods for networked sensor 

nodes. The review focused on the employed occupancy detection measures, network-level 

data filtering & fusion techniques, NDD, and the spatial and temporal resolution of 

occupancy detection and tracking. The review is novel in assessing the impact, the gap, 

and the enhanced accuracy networked-node occupancy detection systems offer. The 

findings of the literature review are listed in Chapter 2.    

Figure 5. A summary chart of contribution towards various occupancy detection and tracking 

pipeline elements. Left most elements in the chart represent output for each pipeline level. Lowest 

level represents the hardware platforms, while the highest level represents the highest order of the 

functionality i.e., tracking.  
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The overall research methodology follows a bottom-up approach toward solving the 

occupancy detection and tracking optimization problem. This approach is illustrated in 

detail in figure 5. As defined in the last section, there are a number of issues with both the 

node-level and network-level occupancy estimation methods, that this approach attempts 

to solve.  

The issues of IR shielding, IR noise, and uniqueness of environmental variables, 

persist in the literature because there is a lack of a comprehensive on-site training dataset 

that contains patterns encompassing anticipated occupancy scenarios. Such a dataset, 

while challenging to collect, would consequently require significant computational power 

to train and may still fail to adapt to novel occupancy patterns detected by the sensor. For 

the same reason, the ML models are typically trained off-site and model updates require 

over-the-cloud transfer. Any occupancy pattern which was not part of the off-site training 

dataset will likely cause degradation in accuracy. To overcome this challenge, in chapter 

3, we propose a KNN classifier based ODLL algorithm, that can be trained “near” the 

SLEEPIR sensor node using an IoT device and a training dataset from the same sensor 

node where the occupancy inference is needed. Traditionally, ML models that are 

incapable of being trained locally at the end-user premises where the sensor node is 

present, need to be updated via over-the-cloud transfer. Although cloud-based transfer has 

fewer challenges in terms of application design, it is expensive in terms of latency in data 

transfer, added connectivity, equipment overheads and a host of data privacy and network 

security issues. The proposed ODLL algorithm in chapter 3 ensures that the ML training 
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phase happens locally, and no over-the-cloud transfer is required. For comparison 

purposes, an off-site static LSTM based occupancy model was also trained. 

Chapter 4 addresses the gaps in the network-level occupancy estimation methods 

related to maximizing the spatial coverage for a networked occupancy sensor system. This 

chapter presents proof of concept that with a limited number of sensors and sparse spatial 

coverage, a PF can be used to detect the human occupancy of an indoor space regardless 

of environmental infrared noises. The method exploits the temporal bounds on the change 

in the occupancy state of the environment. It also factors in the proximity of sensor nodes 

to each other by evaluating inter-node observation correlation and resultantly structures 

the PF measurement updates in a way that human occupancy probability is spread spatially 

in expanded vicinity around the sensor rather than only inside the sensor observation cone. 

Chapter 5 attempts to address the gap present in the network-level occupancy 

estimation methods that pertain to the pre-requisite of the use of historical data for filtering 

out the noisy node-level sensor observations. This chapter outlines a BF-based algorithm 

that is more robust to environmental IR disturbances when compared to PF-based 

occupancy detection and tracking algorithm presented in chapter 4. Moreover, unlike the 

PF-based algorithm, it also avoids using the historical sensor data to be able to filter out 

noisy node-level observations. The proposed method also allows the use of a minimal 

number of adjacent sensor nodes to detect the occupancy of an entire covered space of 

interest. The presented approach utilizes a MDP formulation[24] to model the indoor 

occupancy states and occupancy transition probabilities between states. We perform FMA 

on an underlying MDP, to evaluate transition probability and expected time to travel 
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between two occupancy states. These two parameters play a crucial role in filtering out 

environmental IR disturbances. 

Chapter 6 introduces the enhanced room-level tracking capability of PF and BF-based 

occupancy estimation methods. Both methods are flexible enough to increase the size of 

tracking resolution to zones where a zone can comprise more than one room. The tracking 

output is also utilized as feedback to fine-tune node adjacency assumptions. As an 

example, the tracking output can re-adjust the room adjacency relationships because little 

or no transitions were recorded between two rooms which were initially thought to be 

adjacent and accessible to each other. Moreover, separate ODLL KNN based sub-

classifiers are trained for frequently encountered occupancy scenarios which provide 

superior accuracy when compared to a base classifier trained for all scenarios. This 

limitation of the classification space to relevant scenarios improves the classifier accuracy. 

Overall, this chapter explains the idea of using a resource constrained specialized ML 

models that are trained with anticipated occupancy scenarios. Classifier selection is 

performed based upon identified context via feature clustering, 

Chapter 7 lists the contributions of this study. It also concludes the dissertation by 

listing future research avenues for advancing network-level occupancy detection and 

tracking methods.  

1.3.  Scope and Expected Outcomes 

This dissertation identifies the gaps that impact the performance of networked 

nodes occupancy detection and tracking pipelines. It proposes data collection strategies, 

sensor models, data fusion techniques, node-level ML, and network-level occupancy 
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estimation algorithms. While the evaluation underlying node-level sensor technologies is 

not the prime focus of this work, PIR sensors are chosen as sensors of reference, so that 

the performance of networked nodes-based occupancy detection and tracking systems can 

be compared consistently across the proposed and benchmark methods. Although 

references to other sensor modalities can be found within the literature review section, it 

is ensured that any study in the literature that does not include PIR sensors is excluded 

from comparisons throughout the dissertation.     

The expected research outcomes from this study are listed below. 

Outcome 1: A node-level ODLL classifier that continuously learns evolving occupancy 

patterns and reduces the average 15.43% false positive and 17.92% false negative error 

generated by LSTM-based offline classifier. The primary causes of these errors are 

environmental IR disturbances and IR shielding. 

Outcome 2: A network-level algorithm capable of exploiting the adjacency and 

correlations between the networked nodes to reduce the average 13.70% FP and 16.31% 

false negatives error generated by a Finite State Machine network-level estimation 

algorithm.  

Outcome 3: A 1-minute resolution occupancy tracking system that exploits the node 

adjacency constraints without the use of historical sensor data, to filter the unreachable 

occupancy states and reduce the average 37.56% tracking error generated by a baseline 

EKF based occupancy tracking.  
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2. LITERATURE REVIEW1 

 

In the last decade, there has been a considerable shift from high-performance and 

energy-efficient buildings towards co-optimizing occupant comfort and building energy 

demand [25, 26]. Multiple studies show that a significant proportion of occupants in US 

office buildings (up to 75%) are dissatisfied with their thermal environment [27, 28]. 

Moreover, existing stand-alone occupancy sensors provide limited performance that can 

cause false negatives (switching off heating and lights during occupancy), resulting in 

occupant dissatisfaction [26]. Standalone occupancy sensor based methods struggle to 

achieve the same level of improvement in occupant comfort level [3]when compared to 

networked occupancy sensor nodes, while deployed under same configuration. Among 

recent review articles [26, 29-32], an overwhelming majority focuses on the methods that 

are based on standalone occupancy sensors. As such no review exists dedicated to an 

algorithmic aspect of multi-node occupancy sensing [13]. In the same set of articles, a 

basic premise is missing, i.e., the actual occupancy behavior depends upon the building 

design, sensor node positioning, room connectivity, purpose of each space in a residential 

or an office unit, and occupant priorities, which tend to be highly time sensitive. Thus, it 

may be contended that in order to propose a thorough and accurate occupancy detection 

model for applications like HVAC Control and Occupant Comfort [33], it is necessary to 

 

1 Part of this chapter is reprinted from "Indoor Occupancy Sensing via Networked Nodes (2012–2022): A 

Review." By Emad-ud-din, M. and Y. Wang (2023). FUTURE INTERNET JOURNAL 15(3): 116 with 

the permission of MDPI. 
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have an interconnected network of occupancy sensors that is aware of the room 

connectivity, time-sensitive occupancy behavior and expected use of each space under 

observation. The use of multiple sensing nodes to improve detection performance is not 

novel and has been around for at least a decade. Examples of how this can be achieved 

include extracting ML network-level features from a multivariate raw-sensor data [34] or 

determining occupancy via a PF [35] that fuses the node-level ML inference to estimate 

an occupancy belief. Review studies use evaluation metrics from the cost Field [29] of the 

proposed solution, to the accuracy and failure rate [5] of the solution. This literature 

review, however, aims to evaluate the occupancy estimation methods for networked 

sensor nodes from an application’s perspective. Methods are assessed based on the ADPs, 

i.e., accuracy requirement, information requirement, minimum sensor observation and 

maximum failure rate and feasible detection area. This review focuses on the employed 

occupancy detection measure, network-level data filtering & fusion techniques, NDD and 

the spatial and temporal resolution of occupancy detection. This review is novel in terms 

Figure 6. An illustration showing the steps of the review methodology. 

Reprinted with permission from [4] 
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of assessing the impact, the gap, and the enhanced accuracy that networked-node 

occupancy detection systems offer. 

2.1. Review Methodology 

This review considers research articles that outline the occupancy estimation 

methods and algorithms involving two or more networked occupancy sensor nodes. It 

tabulates the studies that highlight the gaps in the use of networked sensor nodes for 

occupancy sensing. These occupancy sensing gaps exist in several application areas. Each 

application area demands a specific set of parameters from the networked sensor nodes 

and the occupancy estimation methods, to address application area challenges. These 

parameters are termed ADPs. These ADPs are identified from the reviewed studies and 

are tabulated and associated with these studies. This phase is referred to as Occupancy 

Sensing Gap and ADP Identification phase. Articles in the literature that address the 

identified gaps are then evaluated. Comments are added to each article on whether the 

proposed solutions in the articles contain the ADPs demanded by a particular application 

area. This phase is termed the Solution to Application Mapping phase. The review is 

concluded by comparing the accuracy delivered by each of the solutions. A discussion is 

added by the end of this chapter about the occupancy estimation methods used by each 

solution, and the reasons behind the reported accuracies are highlighted. Explanations are 

also listed as to why certain proposed solutions are not suitable to some application areas 

despite the contrary claims by the authors. This phase is termed as Accuracy and 

Suitability Analysis phase. The review thus presents a complete picture to the reader, from 

identifying sensing gaps to the suitability of each available solution in the literature to the 
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gaps and application areas. It must be mentioned here that although the review's primary 

focus lies on networked sensor nodes-based occupancy estimation solutions, the 

underlying sensor modalities for each solution are listed. The reviewed estimation 

methods may not be agnostic to the underlying sensing technology. The illustration 

summarizing the review methodology is shown in figure 6.  

Table I. Occupancy Sensing Gaps for Networked Sensor Nodes-Based Estimation Methods. 

Reprinted with permission from [4] 

 

Studies Application Area Gaps 

[34],[3],[36],[37],[38],[39],[40],[41] 
HVAC Control and 

Occupant Comfort 

- Stationary human detection 

- Real-time occupancy detection 

- Privacy concerns 

- Infrastructure overhead 

- False Negatives 

- Historical and expected occupancy data 

required 

- Reliability and fault tolerance required 

[34],[36],[37, 41], [42], [43], [44], 

[38],[45],[46],[47] 
Health and Safety 

- Stationary human detection 

- Real-time occupancy detection 

- Privacy concerns 

- Infrastructure overhead 

- False positives 

- Zone level detection 

- Historical and expected occupancy data 

required 

- High accuracy required 

- Reliability and fault tolerance required 

[39],[41],[48],[49],[11],[50],[35],[51] 
Energy and Space 

Utilization 

- Stationary human detection 

- Occupant count required 

- Zone level detection 

- Infrastructure overhead 

[11],[52],[6],[53],[54],[35] Security 

- Stationary human detection 

- Infrastructure overhead 

- Realtime occupant tracking required. 

- False Negatives 

- High accuracy required 

- Zone level detection 

- Infrastructure overhead 

- Reliability and fault tolerance required 
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2.2. Occupancy Sensing Gaps and ADP Identification 

First, the occupancy detection gaps found in the literature for networked sensor 

node-based occupancy estimation methods are identified. Table 1. provides a non-

exhaustive but a representative list of most common gaps along with the corresponding 

occupancy detection application area found within a set of representative studies. 

The gaps identified in table 1 point towards a specific set of incapabilities that are 

present either within the underlying sensing technologies, the occupancy estimation 

method, or the communication and integration framework that enables the networking 

between these sensor nodes. As mentioned earlier, this review focuses on the shortcomings 

of the occupancy estimation methods only and the impact of underlying sensing 

technologies and wireless sensor networks' communication reliability are separate topics 

with dedicated studies in the literature dealing with these topics. The shortcomings present 

within occupancy estimation methods for any given application area can be overcome 

through a set of parameters that the estimation method must conform to. These parameters 

are termed ADPs. Table 2 transforms the identified gaps into ADPs with specific values 

for specific applications. Standard documents from various associations and agencies like 

the ASHRAE[55], CEC[56], IBC[57], NFPA[58] and IECC[59], are used by the table. 

The table also lists IoT and Edge AI devices among the potential method execution 

platforms. The ADPs listed in table 2 serve as the suitability criteria when selecting a 

particular occupancy estimation solution for a certain application. These ADPs also bring 

to light certain interesting insights. For example, the accuracy requirement for occupancy 

sensors used for HVAC controls varies depending on the specific application and building 
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type. However, generally, the occupancy sensor accuracy should be high enough to 

correctly detect the presence or absence of occupants in a specific area. The accuracy 

requirement gets more stringent in the case of both safety and security applications. This 

is because these applications include critical services such as emergency evacuation, fire 

detection and suppression, and security depends on the ability of the occupancy sensor to 

accurately detect the presence or absence of people in a building.  

Table II. ADPs for each Application Area. Reprinted with permission from [4]. 

Application 

Area 
ADPs 

HVAC 

Control and 

Occupant 

Comfort 

Accuracy requirement (ASHRAE): ≥ 90%  

Information requirement: Historical and Expected occupancy info required. 

Execution Platforms: Enterprise core appliances, Datacenters, IoT & Edge AI devices  

Minimum sensor observation rate (ASHRAE): ≤ 30 minutes 

Maximum sensor failure rate: No quantification found. Still a research gap [26] 

Feasible Detection Area (ASHRAE): Office (≤ 250 𝑓𝑡2), Storage (≥ 50ft2 & ≤
1000ft2) 
Feasible Detection Area (CEC): Office (≤ 250ft2), Multipurpose rooms (≤ 1000ft2), 
Indoor spaces (≤ 300ft2) 
Feasible Detection Area (IECC): Indoor spaces (≤ 300ft2)                          

Health and 

Safety 

Accuracy requirement (IBC, NFPA): ≥ 95%  

Information requirement: Historical and Expected occupancy info required. 

Execution Platforms: IoT, Edge AI devices  

Minimum sensor observation rate: ≤ 1 minute (dictated by sensor limitations) 

Maximum sensor failure rate (IBC, NFPA): 0.01% 

Feasible Detection Area (CEC): Lightening control not permitted for shutoff control in 

healthcare facilities or Egress lightening where power consumption ≤ 0.1𝑊/ft2                                        

Energy and 

Space 

Utilization 

Accuracy requirement (ASHRAE, IECC): ≥ 90%  

Information requirement: Contiguous Indoor spaces need to be monitored to enable 

tracking applications. No historical or expected occupancy data needed. 

Execution Platforms: Enterprise core appliances, Datacenters, IoT, Edge AI devices  

Minimum sensor observation rate: Hourly 

Maximum sensor failure rate: No quantification found. Still a research gap [26] 

Feasible Detection Area (CEC):  Indoor spaces ≤ 300ft2, Storage rooms (≥ 50ft2 & ≤
1000ft2), Office space (≤ 250ft2).                                   

Security 

Accuracy requirement (IBC): ≥ 95%  

Information requirement: Moderate NDD to enable tracking applications. 

Execution Platforms: IoT, Edge AI devices  

Minimum sensor observation rate:≤ 1 minute (dictated by sensor limitations) 

Maximum sensor failure rate (IBC): 0.01% 

Feasible Detection Area (CEC):  Indoor spaces ≤ 300ft2, Storage rooms (≥ 50ft2 & ≤
1000ft2), Office space (≤ 250ft2).                                   
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Another important insight is that the response time of the occupancy detection 

method becomes important for safety and security applications, as it should be fast enough 

to detect the presence of people and activate the safety system accordingly. Thus, the 

potential execution platform for such applications excludes time-consuming cloud-based 

processing options such as Enterprise core appliances and datacenters. 

Also worth noting is that CEC standards recommend using occupancy sensors in 

smaller indoor spaces with high traffic that have areas less than 300ft2, while at the same 

time these standards recommend using occupancy sensors in storage rooms or multi-

purpose spaces that can go as large as 1000ft2. It must be mentioned here that these 

standards do not make recommendations for emergency facilities such as healthcare 

facilities or fire stations since critical operations may be affected due to automated control. 

It can also be observed that security applications demand high NDD since it is crucial to 

tracking occupants indoors. Security applications like intrusion detection are required to 

detect the path or trajectory (entering or leaving) the occupant is pursuing. 

2.3. Solutions to Application Mapping 

This review aims to establish the suitability of state-of-the-art networked sensor 

nodes-based occupancy estimation solutions to occupancy detection application areas. It 

is critical to mention here that the sensor nodes can be exposed to phenomena that can 

interfere with sensor measurements. The phenomena can include pronounced variations 

of temperature, pressure, radiation, IR shielding [8], EM shielding [60],  IR noise [3] and 

EM noise[61]. In short, sensor measurements are error prone. Data fusion techniques have 
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been widely employed in literature to overcome such errors. Data fusion is “the use of 

techniques that combine data from multiple sources and gather this information to achieve 

inferences” [12]. The fused inferences or decisions are more informed and are thus more 

accurate. Moreover, fusion is robust to sensor faults, and communications breakdowns as 

the fusion technique employs redundant or complementary sensor nodes which can 

compensate for the lost information. In practice, networked sensor nodes commonly suffer 

from communication breakdowns [14].  

 It is a well-known fact that data fusion caters to the spatial and temporal coverage 

blind spots of sensor nodes [3]. For occupancy sensors the spatial coverage of a sensor 

usually means the sensor’s FoV or its effective volumetric detection range. As for their 

temporal coverage, it usually depends on the sensor’s sampling rate, node’s duty cycle and 

communication delays[12]. Table 3 lists the reviewed methods along with the employed 

occupancy detection measure, network-level data filtering & fusion techniques, NDD and 

the spatial and temporal resolution of the occupancy detection. Most reviewed articles 

make explicit claims about the areas where their research is applicable, while others 

choose not to comment about the applicable application areas. Table 3 reviews articles 

that propose the occupancy detection and tracking methods, matured to a point where the 

authors could claim a particular application area.  
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Table III. Reviewed Solutions. Reprinted with permission from [4]. 

Solution 

Filtering 

and Fusion 

Technique

s 

Input Data 

Streams 
Detection Measure NDD 

Spatio-

temporal 

Resolution & 

Avg Accuracy 

Author 

claimed 

Application 

Areas 

[62] 

Bayesian 

Occupancy 

Model 

PIR sensor 

nodes 

BF based prior 

probability requires 

historical data & 

sensor model 

403ft2/𝑛𝑜𝑑𝑒 

Multiple 

zones, 60 sec, 

71% 

Energy & 

Space 

Utilization 

[63] 

SVM, 

LDA, 

QDA, RF  

PIR, Light, 

Temp, Sound, 

𝐶𝑂2  

ML Inference 49ft2/𝑛𝑜𝑑𝑒 
Single Zone, 

30 sec, 98.4% 

HVAC 

Control & 

Occupant 

Comfort 

[64] 
Decision 

Tree 

PIR, Sound, 

Power use, 𝐶𝑂2  
ML Inference 28ft2/𝑛𝑜𝑑𝑒 

Single Zone, 

60 sec, 97.9% 

HVAC 

Control & 

Occupant 

Comfort 

[40] 

RBF based 

Neural 

Network 

PIR, RH, Light, 

Sound, Temp, 

𝐶𝑂2  

ML Inference 430ft2/𝑛𝑜𝑑𝑒 

Multiple 

Zones, 60 sec, 

87.62% 

Energy and 

Space 

Utilization 

[65] 

Statistical 

Feature 

based 

FFNN 

PIR, Temp, 

Sound, 𝐶𝑂2  
ML Inference 

27 sensor 

nodes, open-

plan office 

space, 8 

occupants 

Multiple 

Zones, 5 min, 

75% 

HVAC 

Control & 

Occupant 

Comfort 

[11] AR HMM 

PIR, Temp, 

Reed switches, 

Airspeed, 𝐶𝑂2  

Expectation 

Maximization 

applied to find the 

local optimal 

solution  

19 sensor 

nodes, lab, 10 

occupants 

Multiple 

Zones, 20 sec, 

84% 

HVAC 

Control & 

Occupant 

Comfort 

[66] 

Multinomia

l Logistic 

Regression 

PIR, Power 

usage, Temp, 

RH, Light, Door 

sensors, 𝐶𝑂2 

Predicted 

probability of the 

occupants being 

active, inactive or 

away 

14ft2/𝑛𝑜𝑑𝑒 

Multiple 

Zones, 60 sec, 

94.9% 

HVAC 

Control & 

Occupant 

Comfort 

[21] 

RF, 

Decision 

Tree, KNN, 

SVM 

PIR, Temp ML Inference 140ft2/𝑛𝑜𝑑𝑒 

Multiple 

Zones, 

variable time, 

99% 

HVAC 

Control & 

Occupant 

Comfort 

[30] FFNN 

PIR, RH, Light, 

Pressure, Temp, 

𝐶𝑂2 ,TVOC, 

Sound, Door & 

Window sensor 

ML Inference 296ft2/𝑛𝑜𝑑𝑒 

Multiple 

Zones, 60 sec, 

94.3% 

HVAC 

Control & 

Occupant 

Comfort, 

Energy & 

Space 

Utilization 

[19] 

Trajectory 

analysis of 

climate 

sensor data 

PIR, Temp, 
𝐶𝑂2 ,VOC, RH, 

AWT, Sound 

Occupancy 

probability via 2 

and 5-minute 

sensor data trends  

54ft2/𝑛𝑜𝑑𝑒 
Single Zone, 

5 min, 77.8% 

HVAC 

Control & 

Occupant 

Comfort 
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2.4. Accuracy and Suitability Analysis 

The following observations can be made about data presented in table 3. 

a. High-accuracy solutions are suitable for Energy & Space Utilization only if they're 

scalable with low NDD. Since this utilization is measured across entire units, 

solutions with high NDD are inherently non-scalable. 

b. Health & Safety and Security apps demand precise occupant tracking. While some 

solutions offer high accuracy (≥ 95%) at the cost of increased NDD, aren't scalable 

for HVAC Control or Occupant Comfort & Energy and Space Utilization 

applications.  

c. NN-based classification and regression methods are accurate, but they require fixed 

training sizes. Missing sensor data must be imputed for inference, and training an 

NN needs a historical dataset. 

Table 4 details the breakdown of how the ADPs for each application area map to each 

of the reviewed solutions in table 3.     

Table IV. ADP Determination for Reviewed Solutions. Reprinted with permission from [4] 

Solution ADPs 

[62] 

Accuracy & Detection Area: 71.0%, 403ft2𝑝𝑒𝑟 𝑛𝑜𝑑𝑒 

Info requirement: Prior probabilities for Bayesian Model using 4 weeks of historical data. 

Execution Platforms: Samsung SmartThings Hub  

Sensor observation rate: 60 sec 

Sensor Failure rate: High MTBF as per datasheet for ZMOTION® ZEPIR0AA PIR sensor 

[63] 

Accuracy & Detection Area: 98.4%, 49ft2𝑝𝑒𝑟 𝑛𝑜𝑑𝑒   

Info requirement: Labeled dataset for ML 

Execution Platforms: ARM based Beaglebone SoC 

Sensor observation rate: 30 sec 

Sensor Failure rate: Unspecified PIR sensor  

[64] 

Accuracy & Detection Area: 97.9%, 28ft2𝑝𝑒𝑟 𝑛𝑜𝑑𝑒  

Info requirement: Labeled dataset for ML 

Execution Platforms: PC/Server  

Sensor observation rate: 60 sec 

Sensor Failure rate: PIR Sensor MTBF unknown (Phidgets 1111 IR Motion Sensor) 
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Table IV Continued 

2.4.1. Comments on Solution Conformance to the Claimed Application Areas 

Method mentioned proposed in [62] is not feasible for the Energy and Space 

Utilization application as claimed by the author. This is because the solution accuracy 

does not meet ADP accuracy criteria i.e., 71% < 90%. It is a data-driven method thus has 

a pre-requisite of historical data collection before its deployment. 

Solution ADPs 

[40] 

Accuracy & Detection Area: 87.6%, 430ft2𝑝𝑒𝑟 𝑛𝑜𝑑𝑒  

Info requirement: Labeled dataset for ML 

Execution Platforms: Arduino Black Widow single-board MCU, MATLAB on PC/Server 

Sensor observation rate: 60 sec 

Sensor Failure rate: Unspecified PIR sensor 

[65] 

Accuracy & Detection Area: 75.0%, <50ft2𝑝𝑒𝑟 𝑛𝑜𝑑𝑒   

Info requirement: Labeled dataset for ML 

Execution Platforms: HOBO U series event loggers, MATLAB & WEKA on PC/Server 

Sensor observation rate: 5 min 

Failure rate: Unspecified PIR sensor 

[11] 

Accuracy & Detection Area: 84.0%, <50ft2𝑝𝑒𝑟 𝑛𝑜𝑑𝑒 

Info requirement: time-series data correlations need to be evaluated pre-deployment. 

Execution Platforms: wireless measurement nodes, PC/Server 

Sensor observation rate: 20 sec 

Failure rate: Unspecified PIR sensor 

[66] 

Accuracy & Detection Area: 94.9%, 14ft2𝑝𝑒𝑟 𝑛𝑜𝑑𝑒 

Info requirement: Labeled dataset for ML 

Execution Platforms: BACnet™ for sensor connectivity, R on Workstation 

Sensor observation rate: 60 sec 

Failure rate: Unspecified PIR sensor 

[21] 

Accuracy & Detection Area: 99.0%, 140ft2𝑝𝑒𝑟 𝑛𝑜𝑑𝑒 

Info requirement: Domain knowledge, Labeled dataset for ML 

Execution Platforms: NI Compact DAQ, scikit-learn on ARM based Beaglebone Black SoC  

Sensor observation rate: Variable 

Failure rate: Unspecified PIR sensor  

[30] 

Accuracy: 94.3%, 296ft2𝑝𝑒𝑟 𝑛𝑜𝑑𝑒 

Info requirement: Labeled dataset for ML 

Execution Platforms: Arduino Uno, ARM based Kerlink® IoT Wirnet 868 Station 

Sensor observation rate: 60 sec 

Failure rate: >10000 hr (Panasonic® PaPIRs EKMB) 

[19] 

Accuracy & Detection Area: 77.8%, 54ft2𝑝𝑒𝑟 𝑛𝑜𝑑𝑒   

Info requirement: Method parameters and thresholds are set empirically for each sensor node. 

Execution Platforms: Arduino Mega, PC/Server 

Sensor observation rate: 5 min 

Failure rate: High MTBF as per datasheet (RE 200 B) 
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Authors in [63] claim the method’s suitability for HVAC Control and Occupant 

Comfort application. Although the method is suitable on a smaller scale, it cannot scale 

up well as the spatial NDD is high i.e., 49ft2/𝑛𝑜𝑑𝑒. It is a data-driven method. 

The method mentioned in [64] is not feasible for the author claimed HVAC 

Control and Occupant Comfort application even on a smaller scale. This is because the 

execution platform for the algorithm is a PC/Server and the implementation is not 

optimized for an IoT or Edge AI [67] device. Also, the solution cannot scale up well as 

the spatial NDD is high i.e., 28ft2/𝑛𝑜𝑑𝑒. It is a data-driven method and has a dataset pre-

requisite. Alternatively, the method is suitable for Energy and Space Utilization 

applications. 

The method proposed by [40] is not feasible for the HVAC Control and Occupant 

Comfort application area as claimed by the authors. Although the sensor node data is 

logged via MCU, the ML algorithm execution platform for the algorithm is a PC/Server. 

Moreover, solution accuracy does not meet ADP accuracy criteria 87.6% < 90%. It is a 

data-driven method and has a dataset pre-requisite. 

The method presented in [65] is not feasible for the author claimed HVAC Control 

and Occupant Comfort application. Sensor data is logged via third party loggers, the ML 

algorithm execution platform for the algorithm is MATLAB/WEKA on a PC/Server. 

Moreover, solution accuracy does not meet ADP accuracy criteria i.e., 75.0% < 90%. It 

is a data-driven method and has a dataset pre-requisite. 

It is not feasible to implement  the method proposed in [11] for the author claimed 

HVAC Control and Occupant Comfort application. The algorithm execution platform for 
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the algorithm is a PC/Server. Moreover, solution accuracy does not meet ADP accuracy 

criteria i.e., 74.0% < 90%. It is a data-driven method and requires historical sensor data 

for time-series data correlation evaluation. 

Method presented by [66] for the claimed HVAC Control and Occupant Comfort 

application is not feasible. The solution cannot scale up well with the spatial NDD of 

14ft2/𝑛𝑜𝑑𝑒. It is a data-driven method and thus requires a labeled dataset. Although the 

method uses a standard protocol by ASHRAE for sensor communication, yet the 

regression algorithm execution is not optimized for IoT execution which makes the 

feasibility of the algorithm to be questionable to be used as solution for occupancy 

detection. 

The method proposed by [21] was found to be suitable for the author claimed 

HVAC Control and Occupant Comfort application. The solution can scale up well as the 

spatial NDD is sufficient to cover an average sized room i.e., 140ft2/𝑛𝑜𝑑𝑒. It is a data-

driven method thus it requires a dataset to be collected pre-deployment. Moreover, a 

human activities layer is incorporated in the learning model which requires domain 

knowledge about the occupancy patterns. The solution is matured to the point that it has 

been implemented over an IoT device.  

Method presented in [30] is suitable for the author claimed HVAC Control and 

Occupant Comfort and Energy and Space Utilization applications. The solution can scale 

up as the spatial NDD is low i.e., 296ft2/𝑛𝑜𝑑𝑒. It is a data-driven method and thus requires 

a labeled dataset to be collected. The solution is optimized in terms of node power 

consumption and local processing at nodes via an IoT device. The ML pre-processing, 
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training and inference however is made at a back-end machine. Since a two FFNN is 

relatively simple to implement over an IoT compatible ML framework such as 

TensorFlow Lite, a case can be made that the solution is suitable for an IoT based 

implementation. The solution is also alternatively suitable for Health and Safety 

applications as it meets the desired ADP guidelines for this application area.     

 The method in [19] was found to be not feasible for HVAC Control and Occupant 

Comfort application as claimed by the author. The solution can also not scale up well with 

the spatial NDD of 54ft2/𝑛𝑜𝑑𝑒. It is an analytical method thus it may only require domain 

knowledge yet certain thresholds and parameters for Zero Lag Exponential Moving 

Average algorithm required empirical tuning. The algorithm can be easily ported to IoT 

for execution which makes the method suitable for IoT execution, but the accuracy does 

not meet ADP accuracy criteria i.e., 77.8% < 90%. 

2.5. Discussion and Future Trends 

One of the important ADP indicators used in the suitability analysis is NDD. It is 

interesting to note here that this density is a simple indicator that is evaluated by dividing 

the total area of the monitored indoor space by the number of sensor nodes employed by 

the method. This indicator has no direct relationship with the sensor FoV or range which 

is usually significantly smaller compared to the NDD. There is a list of factors that 

contribute towards determining the NDD. Most impactful ones include the node 

positioning strategy, estimation method accuracy, network/communication reliability, 

environment contributed sensor noise and the floorplan of the monitored area. Among 

these factors, the node positioning strategy, estimation method accuracy and network 
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reliability are the factors that can be optimized to decrease NDD. In effect, NDD can be 

thought of as a proposed optimization measure by a method, for the node positioning 

strategy, estimation method accuracy and network reliability. Although there exist 

dedicated studies for node positioning strategy[68] and network reliability[14] but all of 

the reviewed articles device their own positioning strategy.   

During the review effort, it was noticed that most studies focused on HVAC Control and 

Occupant Comfort and Energy and Space Utilization applications rather than applications 

like Health and Safety and Security. This is because the latter of the mentioned 

applications have ADPs that require high reliability and accuracy which is difficult to 

achieve given the challenging task of occupancy detection and tracking in dynamic 

environments. Most of the reviewed works attempted to tackle the challenge of highly 

noise prone and dynamic environment by adding to the suite of sensor modalities. A small 

minority of methods[19, 30] presented the sensor data responsible for false positives or 

negatives and proposed consequent solutions to resolve the errors.   

Among the researched literature one of the major gaps for data-driven occupancy 

detection methods was found to be needed for periodic collection of training set to 

incorporate novel occupancy scenarios. The dataset also includes ground truth occupancy 

data. This is a problem because collection and labelling of new training datasets is far from 

an ideal task for an end-user or in some cases it is infeasible. To address this issue, certain 

studies[69-71] have suggested unsupervised methods as these algorithms need not label 

the dataset yet such methods have limited applicability as error-prone prior expert 

knowledge is used for initialization of classes. This knowledge may be based on 
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assumptions or data distribution of sensor data that may only be valid once the occupancy 

patterns evolve. 

The future for tacking such a complex issue lies in employing more capable IoT 

devices like Edge AI devices [72] so that on-device ML training and inference can be 

made incorporating newer occupancy scenarios. The dedicated field of ODLL[23, 73, 74] 

offers benefits such as a local learning approach where occupancy patterns are learned on 

the fly, thus making such methods suitable for practice. Moreover, privacy-preserving 

automated labeling techniques are the flip side of the coin when the OODL approach is 

used, as the collected dataset also needs to be labeled. Literature needs reliable privacy-

preserving techniques in this regard, but video/image-based automated yet privacy-

compromising ground-truth collection techniques[48, 75] can be found. 

2.6. Conclusion 

This review effort developed a matching strategy for mapping occupancy 

estimation methods involving networked occupancy sensor nodes to the most suitable 

application areas. In this effort, multiple application areas were investigated to identify a 

location of ADPs that can help guide the suitability determination process. The ADPs 

represent the most demanding requirements from the selected application area. Therefore, 

they can be used to derive design specifications from developing a solution or can equally 

be used to assess an already designed occupancy solution. ADPs are determined based on 

occupancy standard documentation, performance constraints, application area 

considerations, and the sensing technologies' limitations. As a result of stringent 

application area requirements placed by standardization agencies, sensor limitations, and 
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challenging environmental constraints, a limited number of methods were able to conform 

to the proposed ADPs.    
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3. NODE-LEVEL ODLL2 

 

 In this chapter, an ODLL approach [23] is proposed to improve the node level 

detection accuracy of SLEEPIR occupancy sensors [7, 10]. While the SLEEPIR sensor 

has an advantage in detecting stationary and near-stationary occupants, its performance is 

limited when it comes to detection range and FoV when compared to traditional PIR 

sensors. To resolve this issue,  LSTM classifier has been deployed [20] in the past to make 

the occupancy inference more reliable within the range and FoV of the sensor. Attempts 

have also been made using Bayesian techniques for improving occupancy estimation, yet 

due to ever changing environmental and occupancy scenarios, considerable accuracy 

deterioration is noted in certain studies [3, 76]. The problem with such implementations is 

that these lack a comprehensive training dataset that contains patterns encompassing 

anticipated occupancy scenarios. Such a dataset, while challenging to collect, would 

consequently require significant computational power to train and yet may still fail to 

adapt to novel occupancy patterns detected by the sensor. For the same reason, the ML 

models are typically trained off-site and model updates require over-the-cloud transfer. 

Any occupancy pattern which was not part of the off-site training dataset will likely cause 

degradation in accuracy.  

 

2 Part of this chapter is reprinted, with permission, from "Promoting Occupancy Detection Accuracy Using 

On-Device Lifelong Learning." By Emad-ud-din, M. and Y. Wang (2023). IEEE SENSORS JOURNAL 

23(9): 9595-9606. Copyright © 2023 IEEE 
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To overcome this challenge, a KNN classifier based ODLL algorithm is proposed, 

that can be trained “near” the SLEEPIR sensor node using an IoT device and the training 

dataset from the same sensor node where the occupancy inference is needed. In any 

classification problem, an ML model which is tasked with predicting the class of a sample, 

is expected to correctly classify any input samples that may deviate by a small margin 

from the target [77]. In the case of occupancy detection, the input samples can deviate 

from the target class i.e., “occupied” or “unoccupied” by a large margin, depending upon 

the occupancy or the unoccupancy scenario. In other words, for example, “occupied” class 

contains several sub-classes which deviate from each other by a large margin as different 

occupancy scenarios can produce varying IR radiation patterns. Thus, addition of more 

occupancy scenarios adds more subclasses to the classification problem, which impacts 

the accuracy of the classifier adversely [78].  

Traditionally, any ML model that could not be trained at the end-user premises 

where the sensor node is present, needs to be updated via over-the-cloud transfer. 

Although cloud-based training has fewer challenges in terms of application design, it 

comes at the cost of latency in data transfer, added connectivity and equipment overheads, 

and a host of security issues such as data privacy and network attacks. The proposed 

ODLL algorithm ensures that the ML training phase happens locally, and no over-the-

cloud transfer is required.  

There are multiple factors contributing to rendering any ML model trainable 

locally. First and foremost is the availability of labeled data. Since most occupancy 

detection systems deployed at the user premises need the capability of automatically 
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collecting the ground truth via labeling the data, it becomes essential to collect data and 

train models off-site. Secondly, even if the ground truth can somehow be collected, 

expensive computational and memory resources in the form of expensive IoT devices need 

to be deployed for local training due to the large memory requirements to process the 

collected dataset. The cost of expensive IoT devices can in turn drive up the cost of the 

overall solution. The use of high-end IoT devices is feasible for some applications where 

accuracy is critical, as training observations are gathered from the same sensor node where 

the inference is made but, in our case, where SLEEPIR sensors are applied for occupancy 

status detection in residential and commercial buildings, the cost and device power 

consumption are critical factors. This is because competing traditional PIR sensor-based 

solutions are extremely low-cost and power-efficient. Thus, a unique observation labeling 

technique is proposed that makes use of a combination of temporal constraints on human 

walking velocity, time-elapsed between two consecutive PIR sensor observations, and 

Figure 7. We use a 2 bed 2 bath apartment as our testbed. We use 4 SLEEPIR sensor nodes for this 

floor plan for dataset collection purposes. Floor plan and sensor node locations are shown. 

Reprinted with permission from [2]. 
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observation distribution. This technique allows to gather ground truth for stationary 

occupancy on-site without any additional equipment or computing power.  

For dataset collection, 4 SLEEPIR sensor nodes were deployed at the testbed as 

shown in Figure 7. The nodes were deployed at a residential apartment unit with 2 

bedrooms and 2 bathrooms. The expanse of the apartment is 10m x 14m. Each node is 

installed at the height of 2.8 meters. As already mentioned in chapter 1, each node 

embedded with a traditional PIR sensor can detect human motion in a circular area of 

radius 2.4 meters. Each node also contains 2x SLEEPIR sensor modules, which can detect 

stationary and moving occupants in a circular area of radius 1.2 meters.  Each node collects 

one observation every 30 seconds.  

In this chapter, the focus lies on the node-level occupancy detection performance 

improvement. Once completed, a networked multiple SLEEPIR node system is 

constructed which utilizes the node-level occupancy and reports the accuracy for the 

network-level occupancy system. A level of network-level accuracy is demonstrated 

which ensures less than 5% chance of encountering false positives or negatives in any 

given week. This occupancy sensor performance standard is listed by US Department of 

Energy in their Saving Energy Nationwide in Structures with Occupancy Recognition 

(SENSOR) Program overview[79].   

The effort in this chapter aims to make the following key contributions. (1) Node-

level reliable occupancy detection for SLEEPIR sensors is achieved by ensuring that 

training observations are gathered from the same sensor node on which the inference is 

made thus limiting the number of occupancy scenarios in the dataset (2) Efficient 
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techniques like KNN based ODLL that eliminates the need for costly IoT devices are used. 

(3) The need for periodic over-the-cloud ML model update feature is eliminated. This 

feature is traditionally needed to address constantly changing occupancy scenarios. 

A brief overview of the state-of-the-art is presented in the next section that outlines 

the present state of single node-based occupancy estimation methods for human 

occupancy detection. After this, a description of the proposed method is provided. The 

next section introduces dataset collection strategy and method performance evaluation. 

Then a brief discussion on addressing the issues that were encountered during the system 

design and experimentation phase is presented. In the results section, the impact of various 

parameters on system accuracy is discussed. The last section gives a brief conclusion of 

the proposed method.  

3.1. Single Node based Occupancy Detection Methods 

Although RNNs like LSTM has proven to be superior in accuracy for time-series 

data when compared to simpler algorithms like Decision Trees and KNN, ML algorithms 

like KNN are superior in terms of efficiency as these do not require training [80]. The 

KNN classifier is a conventional nonparametric classifier that provides effective 

performance for optimal values of the positive integer k. In the KNN rule, a test 

observation (or sample) is assigned the class most frequently represented among the k 

nearest training samples. If two or more such classes exist, then the test sample is assigned 

to the class with a minimum average distance to it. Although the KNN model is not 

“aware” of the temporal dynamics of the gathered observations like RNN model, yet in 

case when KNN is provided with a near-identical training and test dataset distribution 
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which are collected using a specific sensor node, the performance of KNN surpasses that 

of a more sophisticated RNN which is provided with a non-specific sensor dataset. This is 

because every sensor has a limited number of local occupancy scenarios for which it is 

comparatively less challenging to train an ML model. This finding is discussed in the 

results section of this chapter. RNN models like CTRNN and LSTM use BPTT as the 

training algorithm. The computational complexity of BPTT is of order 𝑂(𝑛2), where n is 

the number of non-input neurons [81]. The storage complexity of BPTT is potentially 

unlimited and is proportional to the number of folds in the network [81]. Thus, the 

computational and storage resource requirements for an unoptimized BPTT algorithm 

dictates off-site training for RNN models as most IoT devices are incapable of performing 

on-site RNN training [23, 82]. Due to expensive training algorithms like BPTT, several 

attempts in the literature e.g. Parameter Pruning[83], Quantization[84], and gradient 

compression [85] have been made to reduce the training algorithm complexity to perform 

RNN learning.  

Despite these attempts to optimize on-device RNN learning, only marginal success has 

been achieved in terms of reducing the RNN training complexity [86]. Most IoT devices 

are energy constrained. DRAM access consumes two orders of magnitude more energy 

than on-chip SRAM access[87]. Compared to other Deep Neural Networks, typical RNNs 

have orders of magnitude larger memory footprint of activations which cannot reside over 

on-chip SRAM for most IoT devices, thus DRAM access is needed during training. The 

training memory for an RNN should strictly fit on-chip SRAM to achieve on-device 

training. This is certainly not the case given the large occupancy datasets that usually span 
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from a few days to several months [25]. It can be argued that an already proposed version 

of transfer learning for the on-device learning [73](termed TinyTL) have been employed. 

Since the PIR signal used by the proposed system has unique noise and occupancy 

scenarios, an initial foray into the transfer learning approach in this work yielded few 

encouraging results. Instead of focusing on reducing RNN training complexity, a less 

expensive KNN algorithm is proposed but with an added ability to automatically label the 

dataset. 

Apart from expensive resource usage, models suggested in works [88, 89], when put to 

the test, produced a significant number of false positives due to environmental IR noise 

[18, 88]. This finding is further investigated in the results section. An automated ground 

truth labeling technique is proposed which exploits the fact that if the traditional PIR 

sensor triggers intermittently and frequently, due to non-stationary human presence, there 

must be a stationary human presence even during the periods when the PIR is briefly in 

an untriggered state. This novel ground truth labeling technique ensures that the human 

presence IR radiation pattern unique to each sensor gets labeled correctly as true positive. 

It must be highlighted that in the proposed work, the local ML training dataset is only 

made possible due to the availability of this labeling scheme that automates the occupancy 

ground truth collection. This scheme will be explained further in the system design section 

of this chapter.  

One of the attempts made in literature, to avoid collecting training data altogether, was 

to determine a general occupancy model via a semi-Markov model [90]. This attempt 

hinged on the notion that there exist unique Markov chains indicating occupancy in a 
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Markov model, provided that each Markov chain embeds in it, the detection episodes of 

variance in light, 𝐶𝑂2, humidity, temperature, motion, and acoustic sensor outputs. 

However, the success in occupancy detection for this work was limited as the work only 

proposes low-resolution occupancy-centered HVAC control schedules generated by the 

semi-Markov model. Among the works that label the node-level ground truth, one of the 

most comprehensive publicly available labeled datasets [91] only has 14 days of labeled 

data. Here, labeling was done via still images captured at 1 minute resolution. Another 

work [92] compares performance of KNN, SVM and ANN for occupancy prediction. 

Interestingly, while several statistical ML algorithms were compared, the dataset spanned 

no more than 3 days. In [92], the labeling was done manually via monitoring a video feed. 

The limited availability of labeled datasets for occupancy detection indicates a roadblock 

in terms of training accurate deep learning-based occupancy classifiers. Alternate 

established options for ground-truth collection like camera or thermopile arrays[93] based 

Figure 8. SLEEPIR node generates voltage, ambient temperature, and PIR signal. The voltage data 

is converted to binary occupancy inference via a KNN binary classifier. Selected observations from 

a transient dataset are then used to periodically adapt the KNN classifier through an on-site IoT 

device. Reprinted with permission from [2]. 
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occupancy tracking, are not feasible because of privacy concerns, high cost and 

computation penalty involved. Apart from cameras, sensors such as Inertial Measurement 

Unit (IMU), Visible Light Sensors (VLS)[94] and Wi-Fi sensors are either too noisy or 

require expensive pre-requisites such and radio signal finger-printing [95] in order to be 

part of a scalable occupancy solution. 

Thus, after a careful review of relevant single node-based occupancy detection methods, 

it can be concluded that a constrained dataset-based classifier such as KNN is presently 

the only viable alternative to expensive RNN models, for on-device training and inference. 

Moreover, the proposed automated labeling scheme addresses the gap of collecting ground 

truth locally via utilizing the onboard PIR sensor. 

3.2. System Design 

The overall occupancy detection system flowchart is presented in figure 8. A brief 

algorithm flow is presented below to summarize figure 8. 

1. The raw sensor node inputs which include SLEEPIR sensor module voltage, PIR 

sensor binary output and ambient temperature are collected from each sensor node 

via BLE communication protocol. The SLEEPIR sensor node and communication 

platform details have already been presented in chapter 1. 

2. An observation consisting of raw voltage values from the SLEEPIR sensors, 

ambient temperature value and traditional PIR sensor value are normalized and 

zero centered. A window of l observations is forwarded to the KNN binary 

classifier. The binary classifier then interprets the window of SLEEPIR sensor 

observations and outputs in binary whether the sensor has detected human 
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occupancy or not. This step is explained in sub-section titled “Data Preprocessing 

of Sensor Signals” of this chapter.   

3. As and when novel labeled observations are received from Automated labeling 

algorithm, the KNN classifier training dataset is updated. The automated labeling 

algorithm is detailed in the section titled “KNN based Locally Trained Occupancy 

Classifier” of this chapter. The primary function of the labeling algorithm is to 

accept or reject incoming observations from the sensor node into a transient 

training dataset. This is based on pre-determined criteria. 

3.2.1. Data Preprocessing of Sensor Signals 

The SLEEPIR sensor node generates time-series observations consisting of SLEEPIR 

sensor module raw voltage outputs 𝑉𝑜𝑢𝑡(𝑡) (see chapter 1), Ambient temperature, and off-

the-shelf digital PIR sensor output. To process these observations and infer whether the 

observed area is occupied or not, RNNs are an obvious choice, but these are expensive to 

train and usually require a significantly large dataset as they must be trained over a large 

number of days, if not weeks, for better accuracy. To realize the ideal scenario of local 

training and inference using an IoT device like Raspberry Pi that has constrained 

computational power and memory, a computationally inexpensive algorithm is needed. A 

potential candidate is KNN that is trained over a bounded dataset. A detailed 

computational comparison is presented among KNN and RNN algorithms in the next 

section.  

In general, KNN-based classifiers assume that the set of labeled training data is already 

provided and contains enough training samples to describe the class distributions in the 
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feature space. In the proposed method, the KNN classification is effective as the extracted 

features form discernable clusters in feature space. In other words, observations gathered 

for the cases where there is occupancy, in the feature space, should not be in proximity to 

the observations that are gathered while there is no occupancy. This places emphasis on 

the feature determination process, which is discussed in the remaining subsections. 

3.2.1.1. Time-series Selection and Formatting 

The goal of hand-tuned ML features used widely in the literature is to produce easily 

distinguishable values for various data classes. A good feature remains invariant to the 

slight changes in the input pattern for a particular class and tends to produce roughly 

similar values for patterns belonging to the same class. The elements of the observation 

𝑜𝑏𝑠(𝑡) collected at time t, from sensor node include raw voltage signals from two ADC 

channels of SLEEPIR sensor i.e., [𝑉𝑜𝑢𝑡1(𝑡),𝑉𝑜𝑢𝑡2(𝑡)] and a binary traditional PIR signal 

𝑃𝐼𝑅(𝑡). Notice that Ambient temperature is not considered a part of our dataset. The 

reasons for not doing so have already been discussed in chapter 1. The training dataset is 

then initialized by normalizing and zero-centering all obsT present in the training dataset 

so that it has a zero mean and a standard deviation of 1.  

3.2.1.2. Sliding Window Input Approach 

Following the normalization, the observation time-series 𝑜𝑏𝑠𝑇 which consists of the 

following elements [𝑉𝑜𝑢𝑡1(𝑡),𝑉𝑜𝑢𝑡2(𝑡), 𝑃𝐼𝑅(𝑡)] is divided into non-overlapping windows 

𝑤𝑖𝑛𝑇. Here each element 𝑤𝑖𝑛𝑇 is created by sliding a fixed-horizon window of length 

equaling 8 seconds over the 3-D 𝑜𝑏𝑠 time-series. Here subscript 𝑇 is the timestamp at 

which the PDLC shutter permits increased IR radiation to reach the sensor. The shutter 
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remains in this state for 4 seconds. The PDLC shutter is termed to be in open state for 

these 4 seconds. The remaining time the shutter is termed to be in a closed state. Thus, the 

window duration corresponds to the 8 seconds where the sensor completes its response to 

the 4 seconds PDLC shutter modulation. Figure 9 illustrates the SLEEPIR sensor response 

to the PDLC shutter where IR radiation that reaches the PIR sensor changes every 4 

seconds. 

3.2.1.3. Feature Extraction 

For each 𝑤𝑖𝑛𝑇, 6 ML features were computed. These features are hand-crafted and were 

tested to perform better in terms of KNN classification compared to a host of other features 

that were considered during the feature selection effort. Figure 9 describes the measures 

used in the feature evaluation, figure 10 illustrates the features in the time-series format 

and table 5 provides a description for each feature. 

 

 

Figure 9. Illustration of the variation of the transmitted IR radiation when PDLC Shutter opens or 

closes. 𝒕𝟐 − 𝒕𝟏 = 𝟒 𝒔𝒆𝒄.  𝒕𝟑 − 𝒕𝟏 = 𝟖 𝒔𝒆𝒄. 𝒕𝒉𝒑+ is timestamp when  𝑽𝒐𝒖𝒕 ==
𝑴𝒂𝒙 𝑽

√𝟐
 while 𝒕𝒉𝒑−  is 

timestamp when  𝑽𝒐𝒖𝒕 ==
𝑴𝒊𝒏 𝑽

√𝟐
 . Reprinted with permission from [2]. 
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Table V. Feature Description. Reprinted with permission from [2]. 

SLEEPIR Features Description 

Max 𝑉𝑇  Maximum 𝑉𝑜𝑢𝑡  computed over 𝑤𝑖𝑛𝑇   

Min 𝑉𝑇  Minimum 𝑉𝑜𝑢𝑡  computed over 𝑤𝑖𝑛𝑇   

Half-Power Bandwidth for +ve 

peak (HPB+) 

𝑡ℎ𝑝+ − 𝑡2  

where 𝑡ℎ𝑝+ is timestamp when ( 𝑉𝑜𝑢𝑡 == (𝑀𝑎𝑥 𝑉)/√2) ) 

Half-Power Bandwidth for -ve 

peak (HPB-) 

𝑡ℎ𝑝− − 𝑡1 

where 𝑡ℎ𝑝− is timestamp when ( 𝑉𝑜𝑢𝑡 == (𝑀𝑖𝑛 𝑉)/√2) ) 

Windowed mean (mean 𝑉𝑇) Mean 𝑉𝑜𝑢𝑡  computed over 𝑤𝑖𝑛𝑇  

Windowed Std. Dev (std 𝑉𝑇) Standard Deviation for 𝑉𝑜𝑢𝑡  computed over 𝑤𝑖𝑛𝑇  

 

3.2.2. KNN based Locally Trained Occupancy Classifier 

3.2.2.1. KNN Network Architecture 

KNN is a nonlinear, distance-based method, supervised classification technique. It is a 

direct classification method that does not require a learning process. Instead, it requires 

the indexed storage of the whole data. Given a training dataset (𝑥𝑇, 𝑦𝑇), where T =[𝑡1, 

𝑡1 + 30, 𝑡1 + 60, …] and a test sample 𝑥𝑡𝑒𝑠𝑡, the distance, 𝑑𝑚, between 𝑥𝑡𝑒𝑠𝑡 and 𝑥𝑇 can 

be calculated as in equation 2: 

𝑑𝑚 = ‖𝑥𝑡𝑒𝑠𝑡 − 𝑥𝑇‖                                                  (2) 

Figure 10. Statistical features are evaluated over a 60 sec observation window and are plotted over 

24 hours to illustrate the portions where occupancy was observed i.e., 12am-6am and 6pm-12am. 

These features are used for training/indexing the proposed KNN algorithm. Reprinted with 

permission from [2]. 
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Where ||·|| is the distance. One of the most widely applied distance calculations is 

Euclidean distance. After obtaining the distance 𝑑𝑚, the labels of k training samples with 

the smallest distance can be used. Then, a majority voting will be performed to determine 

the label of the testing sample. It must be highlighted here that as a new sample is assigned 

to a class, the computation time increases as a function of the existing samples in the 

dataset [96].  

The proposed implementation, however, keeps the training dataset bounded via a cap 

on the total number of observations. This is done by periodically eliminating observations 

that are farthest (in terms of Euclidean distance) from the respective cluster center. An 

Elbow method search s[97] is used to determine the optimal number of neighbors k, which 

is a crucial parameter for KNN inference. This search is performed periodically rather than 

at every inference. This method calculates the Within-Cluster-Sum of Squared Errors 

(WSS) for different values of k and choose the k for which WSS starts to diminish for the 

first time. In the plot of WSS-versus-k, this is visible as an elbow. 

3.2.2.2. Automated Labeling Algorithm 

For the initial training of the KNN classifier, the model is trained with observations 

which are labeled via calibration data collected by the end user. Labels 𝑦𝑙 are then 

initialized where each element corresponds to each observation 𝑥𝑙 =

[𝑀𝑎𝑥 𝑉𝑇,𝑀𝑖𝑛 𝑉𝑇, 𝐻𝑃𝐵+,𝐻𝑃𝐵−,𝑚𝑒𝑎𝑛 𝑉𝑇, 𝑠𝑡𝑑 𝑉𝑇]. The calibration labels are collected via 

a smartphone app where the end user labels 20 observation windows. 10 windows are 

labeled as “occupied” while present in the FoV of the SLEEPIR sensor node while 10 

windows are labeled as “unoccupied” while the subject ensures that there is no human 
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presence within the FoV of the SLEEPIR sensor. 

 

Figure 11. t-SNE feature space plot for training dataset {𝒙𝒍, 𝒚𝒍} for Kitchen sensor 𝑿𝟒. 𝑿𝒕𝒆𝒔𝒕 
represents labels that are yet to be labeled. Reprinted with permission from [2]. 

For automatic labeling, the range and FoV of traditional PIR sensor embedded 

within the SLEEPIR node are critical. Experiments conducted in SLEEPIR sensor related 

works [7, 10], discuss in detail the sensor installation height and orientation choices. As a 

result of experimentation in [10], it was found that for sensor installed at a height of 2.8 

meters, the radius of the  SLEEPIR sensor node footprint is 1.2 meters while the radius of 

concentric PIR sensor footprint is 2.4 meters. Each sensor generates a timestamped log of 

occupancy status for traditional PIR sensor as follows. 

𝐷𝑇
𝑖𝑃𝐼𝑅 = {(𝑖, 𝑇): 𝑖 𝜖 𝑁,  𝑇 𝜖 ℝ+}                                          (3) 
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In the equation 3, (𝑖, 𝑡) denotes that PIR sensor at location 𝑋𝑖 was triggered at time 

T. Figure 7 shows the set of locations denoted by index i i.e., 𝑋1, 𝑋2 , 𝑋3 , 𝑋4.  The labeling 

algorithm exploits the time difference between two consecutive PIR activations for a 

sensor. It is assumed that a human subject is present within the sensor range and FoV if 

𝐷𝑇𝑇=𝐷𝑇+1
𝑖𝑃𝐼𝑅 −𝐷𝑇

𝑖𝑃𝐼𝑅
 is ≤ 60 seconds. It must be mentioned here that no two sensors in the 

dataset collection scenario overlap in terms of sensor footprint. In other words, it is 

assumed that the human subject did not leave the sensor footprint area if two consecutive 

PIR activations for the same node are ≤ 60 seconds apart in time. The assumption that there 

certainly would be a stationary occupant in the FoV of sensor if two consecutive PIR 

Algorithm 1: KNN Training Set Label Generator. Reprinted with permission from [2]. 

Input: 𝑥𝑡𝑒𝑠𝑡, 𝑥𝑙, 𝑦𝑙, 𝑡ℎ𝑟𝑒𝑠ℎ_𝑜𝑐𝑐, 𝑡ℎ𝑟𝑒𝑠ℎ_𝑢𝑛𝑜𝑐𝑐 

Output: Updated Training set 𝑥𝑙, 𝑦𝑙 for KNN classifier  

1  𝑘𝑜𝑝𝑡 = 𝐄𝐥𝐛𝐨𝐰_𝐬𝐞𝐚𝐫𝐜𝐡(𝑥𝑙 , 𝑦𝑙); 

2  for all i in 𝑥𝑙 𝑤ℎ𝑒𝑟𝑒 𝑦𝑙 == 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 

3      [𝑐𝑙𝑢𝑠𝑡_𝑐𝑒𝑛𝑡𝑠_𝑜𝑐𝑐, 𝑙𝑜𝑐_𝑜𝑐𝑐]= KMeans(𝑥𝑙 , 𝑘𝑜𝑝𝑡) 

4  for all i in 𝑥𝑙 𝑤ℎ𝑒𝑟𝑒 𝑦𝑙 == 𝑢𝑛𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 

5      [𝑐𝑙𝑢𝑠𝑡_𝑐𝑒𝑛𝑡𝑠_𝑢𝑛𝑜𝑐𝑐, 𝑙𝑜𝑐_𝑢𝑛𝑜𝑐𝑐]= KMeans(𝑥𝑙 , 𝑘𝑜𝑝𝑡) 

6  [𝑑𝑖𝑠𝑡𝑜𝑐𝑐 , 𝑖𝑑𝑥𝑜𝑐𝑐]=farthest_occ_sample(𝑥𝑙 , 𝑦𝑙); 

7  [𝑑𝑖𝑠𝑡𝑢𝑛𝑜𝑐𝑐 , 𝑖𝑑𝑥𝑢𝑛𝑜𝑐𝑐]=farthest_unocc_sample(𝑥𝑙 , 𝑦𝑙); 

8  for all 𝑥𝑡𝑒𝑠𝑡 
9      for all k in 𝑙𝑜𝑐 

10          if dist(𝑥𝑡𝑒𝑠𝑡,𝑐𝑙𝑢𝑠𝑡_𝑐𝑒𝑛𝑡𝑠_𝑜𝑐𝑐) <  𝑡ℎ𝑟𝑒𝑠ℎ_𝑜𝑐𝑐  

11              𝑦𝑡𝑒𝑠𝑡 = 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑; 
12              if dist(𝑥𝑡𝑒𝑠𝑡,𝑐𝑙𝑢𝑠𝑡_𝑐𝑒𝑛𝑡𝑠_𝑜𝑐𝑐) < 𝑑𝑖𝑠𝑡𝑜𝑐𝑐  

13                  if (size(𝑥𝑙) > 1000) 

14                  [𝑥𝑙, 𝑦𝑙]= replace_in_dataset(𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 , 𝑖𝑑𝑥𝑜𝑐𝑐) 

15                  else 
16                  [𝑥𝑙, 𝑦𝑙]= add_to_dataset(𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡) 

17          if dist(𝑥𝑡𝑒𝑠𝑡,𝑐𝑙𝑢𝑠𝑡_𝑐𝑒𝑛𝑡𝑠_𝑢𝑛𝑜𝑐𝑐) <  𝑡ℎ𝑟𝑒𝑠ℎ_𝑢𝑛𝑜𝑐𝑐  

18              𝑦𝑖 = 𝑢𝑛𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑; 
19              if dist(𝑥𝑖 ,𝑐𝑙𝑢𝑠𝑡_𝑐𝑒𝑛𝑡𝑠_𝑢𝑛𝑜𝑐𝑐) < 𝑑𝑖𝑠𝑡𝑢𝑛𝑜𝑐𝑐  

20                if (size(𝑥𝑙) > 1000) 

21                [𝑥𝑙, 𝑦𝑙]=replace_in_dataset(𝑥𝑡𝑒𝑠𝑡, 𝑦𝑡𝑒𝑠𝑡, 𝑖𝑑𝑥𝑢𝑛𝑜𝑐𝑐) 

22                else 
23                [𝑥𝑙, 𝑦𝑙]= add_to_dataset(𝑥𝑡𝑒𝑠𝑡, 𝑦𝑡𝑒𝑠𝑡) 
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triggers are ≤ 60 seconds, is evaluated to be generally true as the training datasets labeled 

based on this assumption provide us with high occupancy detection accuracy. The labeling 

algorithm is better explained via the algorithm steps mentioned in Algorithm 1. The input 

includes all 𝑥𝑡𝑒𝑠𝑡 feature observations that were recorded between 𝑇 and 𝑇 + 1 whenever 

𝐷𝑇𝑇 ≤  60 seconds.  

Algorithm 1 starts by extracting the cluster centers for multiple clusters formed in 

feature space via a typical K-means algorithm. Each of these clusters can belong to either 

an occupied or unoccupied class. The data being clustered belongs to the initial training 

dataset {𝑥𝑙, 𝑦𝑙} recorded via user calibration. The job of algorithm 1 is to update the initial 

training dataset to a more comprehensive training dataset that includes occupancy (and 

unoccupancy) patterns that were not captured during the calibration time period. An 

unclassified observation is evaluated for proximity to the clusters in the initial training 

dataset. If the observation is within a threshold distance from the center of a certain class, 

the observation is assigned the corresponding class to which the cluster belongs. 

Algorithm 1 bounds the size of the dataset to a limit value of 1000. An example of an 

updated training dataset divided into “occupied’ and “unoccupied” clusters is shown in 

figure 11. This figure plots distributed stochastic neighbor embedding (t-SNE) projection 

[98] of the observations. t-SNE gives us an intuition of how the data is arranged in a high-

dimensional space. 

3.2.2.3. Performance Evaluation Comparison between KNN and other RNNs 

To evaluate a performance gain for using dataset bound KNN classifier when 

compared to an RNN, a comprehensive comparison of the KNN classifier and RNN 



 

51 

 

classifier performance is performed. The analysis includes testing the collected dataset 

over LSTM, CTRNN, and proposed KNN architectures. The observation window length 

l is also varied, over a reasonable range to see if certain networks performed better than 

others. It was found that for l=60 sec, the accuracy was highest across all architectures. 

This indicates that the most effective discriminating features exist over a period of 60 

seconds. It is important to mention here that SLEEPIR collects two consecutive 

observations over a span of 60 seconds.  

Table VI. Average Accuracy and Training Duration For 16 Neurons Hidden Layer RNN Models 

(LSTM, CTRNN) and for 5-Nearest Neighbor Model for a Total of 1000 Observations. Reprinted 

with permission from [2]. 

Observation 

Window length 

LSTM CTRNN Proposed KNN 

Acc 

(%) 

training duration 

(sec) 
Acc (%) 

training duration 

(sec) 
Acc (%) 

indexing duration 

(sec) 

30 sec 96.4 5314 92.3 4109 91.7 19 

60 sec 97.1 8722 95.5 8264 94.8 23 

90 sec 91.3 9945 88.0 10427 87.3 24 

120 sec 82.8 16618 7.1 15730 78.7 28 

Table VII. Average Power Consumption for Training 16 Neurons Hidden Layer RNN Models 

(LSTM, CTRNN) and for 5-Nearest Neighbor Model for a Total of 1000 Observations. Reprinted 

with permission from [2]. 

Observation 

Window length 

LSTM CTRNN Proposed KNN 

avg consumption (mAh) avg consumption (mAh) avg consumption (mAh) 

30 sec 1.03 0.96 0.0049 

60 sec 2.13 1.71 0.0045 

90 sec 2.25 1.98 0.0050 

120 sec 3.74 3.06 0.0052 

Table 6 outlines the performance evaluation results for the comparison. Although 

for an unbounded dataset, KNN is not as effective in terms of accuracy as LSTM or 

CTRNN, it does not require expensive BPTT training as is the case with its RNN 

counterparts. Training durations for each of the tested algorithms are also provided in table 
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6. The training durations were measured on a Raspberry Pi 4 using a 64-quad-core Cortex-

A72 (ARM v8) processor. Table 7 lists the power consumed by the Raspberry Pi 4 

platform during the duration of training for LSTM, CTRNN and KNN algorithms for a 

training dataset consisting of 1000 observations. Raspberry Pi consumed between 3.8 W 

to 5.5 W depending on the number of processing cores used during the training process. 

It may be highlighted here that the accuracy and power consumption values in both table 

6 and table 7 are an average for all 4 nodes deployed in the system. 

3.3. Results 

3.3.1. Dataset 

A dataset was collected that employs four SLEEPIR sensor nodes as shown in 

Figure 7. Certain thresholds were used to remove noisy observations as per the literature 

presented in [10]. A single surveillance camera was used to label the ground-truth for all 

rooms as entrances of all rooms and the apartment are visible in the camera FoV. Data for 

a total of 30 days was collected. 23 days of data were used for training and the remaining 

7 days of data for testing. This provided us with a total of 5,184,000 observations for each 

sensor node within the dataset. A total of 3 subjects (1 adult and 2 children) were employed 

to gather the dataset. All the accuracy results are reported for the Kitchen Sensor (𝑋4) 

which has the highest incidence of IR noise in the collected observations i.e., frequent 

usage of stove and tap water.  

3.3.2. Accuracy Analysis 

This work has a unique claim to train the model locally and eliminate the need of 

periodic over the cloud ML model updates. The work also claims to minimize the 



 

53 

 

computational resource usage by the ML model while delivering comparable human 

occupancy accuracy when compared to a traditional RNN method. For this purpose, a 

previously deployed static LSTM model [88] (trained at the lab for human occupancy) 

was used and compared to the proposed KNN model which is dynamically updated every 

24 hours.  

Table VIII. Accuracy Comparison Between Proposed KNN Model and Static LSTM Model. 

Reprinted with permission from [2]. 

Date 

Static LSTM 

Classification Accuracy 

(%) 

Static LSTM 

F1 Score 

Proposed KNN 

Classification Accuracy 

(%) 

Proposed KNN 

F1 Score 

15 April 76.1 0.57 89.9 0.80 

16 April 83.4 0.83 94.8 0.95 

17 April 69.3 0.69 97.6 0.98 

18 April 62.5 0.64 98.0 0.98 

19 April 56.9 0.57 97.2 0.97 

20 April 74.2 0.80 87.5 0.83 

21 April 82.1 0.82 92.6 0.93 

It must be highlighted here that lab environment and IR noises were different in 

many respects from the local environment of the apartment. The results of this 

comparative study are listed in table 8. As mentioned earlier, this study only involves 

Kitchen Sensor (𝑋4). The remining sensors did not involve frequent IR noise like stove 

and warm tap water. While the data for remaining sensors helped us to reach conclusions 

about the average power consumption for the algorithm and the impact of data window 

size and ML architectures over detection accuracy analysis, the data from these sensors 

contained infrequent IR noise sources and would have skewed the detection accuracy to 

be high. The accuracy analysis presented in this work is based on a sensor placed in an 

environment where IR noise is encountered frequently thus representing the model 

performance in challenging environments. 
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3.3.3. Results Discussion and Future Work 

Despite locally collected training set, more than 10% inaccurate classifications for 

the days of April 15th and 20th, 2022, were observed. The reasons were investigated and 

found that both for April 15th and 20th, unusually busy days in terms of cooking and dish 

washing were observed. The extracted features from observations for both these days 

rendered observations far away from occupied/unoccupied cluster centers present in the 

training data. The maximum ambient temperature for the Kitchen sensor for both these 

days was over 82F when the misclassifications occurred. It was observed that the initial 

calibration dataset was collected while the ambient temperature was 75F. Although, 

ambient temperature has a significant impact on the total IR radiation reaching the 

SLEEPIR sensor [88], it is not strictly correlated to occupancy. Ambient room temperature 

in our dataset has a constantly changing profile, caused due to weather, HVAC setpoints, 

difference in daytime and night-time outdoor temperatures as well as seasonal shift in 

sunrise and sunset angles. Figure 2 (chapter 1) shows this profile for a specific day within 

our dataset. Moreover, IR noise sources also tend to change ambient temperature. It is thus 

concluded that ambient temperature must be excluded from the input features for the 

proposed method as it has no obvious correlation to occupancy. 

The training set update via Algorithm 1 slowly modifies the calibration data 

clusters and may even form new clusters. Since KNN allows more visibility into 

classification process, it was found that IR noise in combination with high ambient 

temperature caused the new feature points that were closer to the cluster center of the false 

class. It was thus deduced that although the local occupancy patterns observed over a 
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period of time, manage to modify the calibration dataset clusters in the long-term but 

sudden unusual shifts in the occupancy patterns and IR noise, cause false positives or 

negatives in the short term. A detailed look at the confusion matrices is presented in figure 

12. These matrices, belonging to each test day within the dataset, provide an insight into 

the false positives caused by IR noise and false negatives caused primarily by IR shielding 

effect [8]. Certain IR noises such as warm water from a tap in Kitchen sink may produce 

near identical features to that of human subject. Such features confuse the classifier to 

produce false positives. As a future work, new features need to be formulated that can 

distinguish certain IR noises from human subjects while only using a privacy-aware and 

cost-effective sensor such as a SLEEPIR. 

3.4. Conclusion 

The proposed ODLL KNN based occupancy classification method claims to 

provide superior accuracy and training efficiency compared to static RNN models. The 

Figure 12. The confusion matrices show the performance for the proposed KNN classification 

method. The occupancy ground truth was collected via the proposed labeling algorithm 

(Algorithm 1). Reprinted with permission from [2]. 
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higher accuracy and significantly efficient training hinges on the fact that the KNN model 

is adapted to the novel observations representing new occupancy scenarios. This is only 

made possible as the training dataset is labeled locally with the help of the proposed 

automated labeling algorithm and an initial calibration dataset. The resultant occupancy 

classification can deal with a host of IR noises and occupancy patterns as the training 

observations are gathered from the same sensor node where the inference is made. A 

21.9% average improvement in accuracy was achieved due to the ability to train the model 

locally under local occupancy scenarios. The training duration for a limited training set 

consisting of 1000 records was cut short by the order of magnitude when compared to 

traditional RNN methods. Apart from accuracy and efficiency gains, the proposed method 

eliminates the need for over the cloud ML model updates that are usually carried out to 

update the model to classify newer occupancy patterns.   
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4. NETWORK-LEVEL: PF + LSTM3 

The proposed method in this chapter is essentially a proof of concept that with limited 

number of sensors and sparse spatial coverage, a PF can be used to track the human 

occupancy of an indoor space regardless of environmental infrared noises. The method 

exploits the temporal bounds on the change in occupancy state of the environment. It also 

factors-in the proximity of sensor nodes to each other, and thus PF measurement updates 

are structured in a way that human occupancy probability is spread spatially in expanded 

vicinity around the sensor rather than only inside the sensor observation cone. Human 

occupancy detection is an essential component of many applications like indoor security 

systems, lightening and HVAC automation systems, activity tracking systems [16, 99, 

100], and monitoring systems for elderly people who need around the clock care [101-

103]. Alternate options like camera-based occupancy tracking generally fail to deliver 

because of high infrastructure and computational cost, privacy concerns and failure to 

track high velocity motions. Apart from cameras, sensors like thermopile arrays [93], 

IMUs or Wi-Fi sensors are either too noisy or expensive to be part of a scalable solution.

  

Since PIR are relatively inexpensive and have been traditionally used in human presence 

monitoring systems, many have jumped on the opportunity and designed efficient and 

scalable localization systems based on such sensors. The systems employing such sensors 

 

3 Part of this chapter is reprinted, with permission, from " Indoor Occupancy Estimation using Particle 

Filter and SLEEPIR Sensor System." By Emad-ud-din, M., Chen, Z., Wu, L., Shen, Q., and Y. Wang 

(2022). IEEE SENSORS JOURNAL 22(17): 17173-17183. Copyright © 2022 IEEE 
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can detect heat energy emitted by the human body within a range of roughly 10 meters. 

However, their incapability of detecting stationary occupants limits their applications in 

occupancy-centered smart home appliances [104, 105]. To enable PIR sensors to detect 

stationary occupants, a recently developed SLEEPIR sensor [7, 10] can both detect 

stationary and moving occupants. However, its detection accuracy is still largely impacted 

by environmental infrared noises [18, 88]. To address this, a PF based human presence 

estimation algorithm is presented for the SLEEPIR sensor system. The system includes 

three sensor nodes sparsely located in an indoor space. The proposed algorithm consumes 

low-power and is cost-effective and thus provides scalable service which makes the 

proposed SLEEPIR sensor system eligible for widespread future adoption.  

The proposed particle filtering approach involves a PF which relies on three assumptions 

(1) Any human subjects entering the observed area will trigger at least one SLEEPIR 

sensor node. (2) The SLEEPIR sensors have a limited Field-of-view (FOV) and thus these 

only have sparse coverage of the area monitored for human occupancy (3) Collected 

ground truth data represents the expected traffic conditions within the entire monitored 

area.  

The dataset for this method spans over 15 days. Although the experiment testbed was 

artificially created in a lab for dataset collection purposes, the experiments were 

uncontrolled. Three SLEEPIR sensor nodes are installed in two different configurations 

at the testbed to collect dataset as shown in Figure 13. Primary aim of this study is to not 

optimally cover the testbed space using SLEEPIR sensors but to determine the minimal 

number of sensors to achieve a level of accuracy that ensures less than 5% chance of 
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encountering false positives or negatives in any given week. This occupancy sensor 

performance standard is listed by US Department of Energy in their SENSOR Program 

overview[79].   

In the presented work, the use of a PF for the purpose of estimating the human 

occupancy in an indoor environment is investigated while utilizing a minimal number of 

low-cost SLEEPIR sensor nodes. This effort aims to make the following key contributions. 

(1) A particle filter-based occupancy detection method is realized that can achieve superior 

Figure 13. Two different floorplans as testbeds are used. 3 SLEEPIR sensor nodes for each floorplan 

are employed for dataset collection. Human occupancy is estimated for the locations X1 through X3. 

Ground truth is collected via surveillance cams. Reprinted with permission from [3]. 
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or equivalent accuracy when compared to statistical machine learning models. (2) Robust 

occupancy detection is achieved while maintaining a limited sensor footprint in the 

monitored area. (3) The solution is scalable to variations in the room size, geometry, and 

overall monitored area size. 

Later in this chapter, in section titled “System Input and Pre-Processing 

Algorithms”, we give a detailed description of the method along with a brief overview of 

the SLEEPIR sensor system that our method uses for occupancy estimation. The next 

section titled “PF design” presents a brief discussion on the method and the expected 

impact of various parameters on system accuracy. Then the comments on the limitations 

and capabilities of the method are presented in section titled “Discussion”. The section 

titled “Results” introduces dataset collection strategy and method performance evaluation. 

Lastly a brief conclusion of the work is presented.  

4.1. System Input and Pre-Processing Algorithms 

The overall system flowchart is presented in figure 2. The raw SLEEPIR sensor 

observations are extracted from the SLEEPIR sensor using a Bluetooth communication 

Figure 14. PF based human occupancy detection method flow chart. Networked sensor nodes 

generate voltage, ambient temperature, and PIR data. The voltage is converted to binary occupancy 

observations via a thresholding algorithm. The node-level occupancy observations then update a 

system-level occupancy estimate via a PF. . Reprinted with permission from [3]. 
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protocol. The sensor and communication platform details have already been presented in 

chapter 1. A brief overall algorithm flow is presented below summarizing the flowchart 

presented in figure 14. 

1. The raw sensor inputs which include SLEEPIR sensor voltage, PIR sensor binary 

output and ambient temperature are collected from each sensor node via a 

Bluetooth communication protocol. 

2. Raw voltage values from SLEEPIR sensor are pre-processed using a machine 

learning based thresholding algorithm. This algorithm is detailed in sub-section 

titled “Machine Learning based Thresholding Algorithm”. The thresholding 

algorithm interprets the raw SLEEPIR sensor observations and outputs in binary 

whether the sensor has detected human occupancy or not. The traditional PIR 

sensor output is already binary, so it does not require preprocessing. 

3. Since the binarized observations need to update a PF, a sensor likelihood model is 

designed to shape an update for the PF. This sensor likelihood model merges the 

output from both the SLEEPIR sensor and the traditional PIR sensor into a single 

PF update.  

4. The PF receives these periodic updates from the likelihood function and estimates 

the probability of human occupancy at each of the locations represented in the PF 

state. The world constraints are embedded in the likelihood and PF design thus the 

false positive or false negative observations get filtered and a robust human 
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occupancy belief is estimated by the PF. Likelihood model and PF are described 

in detail in section titled “PF Design”. 

4.1.1. Machine Learning based Thresholding Algorithm 

Since sensor node generates time-series observations consisting of SLEEPIR raw 

voltage output 𝑉𝑜𝑢𝑡(𝑡) (see chapter 1 for details), Ambient temperature 𝑇𝑎𝑚𝑏(𝑡) and off-

the-shelf PIR sensor output 𝑃𝐼𝑅(𝑡), we employ RNNs to classify whether the observation 

indicate human occupancy or not. RNNs, in comparison to the typical FFNNs, have been 

shown to achieve the highest accuracy with time-series data [106], as they can process and 

encode the sequential temporal information contained in a time-series data. First, the 

incoming time-series data from the sensor node is zero-centered and normalized. Then the 

input quantization step is performed. Reason for choosing to quantize input data is given 

in upcoming sub-section. Then the input time-series is divided into pre-determined sized 

observation windows. Each window is then labeled as either occupied or unoccupied 

based on the available ground-truth gathered via web-camera installed testbed. Lastly, a 

Figure 15. LSTM network architecture for SLEEPIR raw observation binary classifier. Reprinted 

with permission from [3]. 
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Long Short-Term Memory (LSTM) Network is trained with the dataset. The trained 

network (shown in figure 15) is deployed so that the network can distinguish between the 

observations indicating occupancy versus those indicating non-occupancy. The 

thresholding algorithm is detailed in the following sub-sections. 

4.1.1.1. Input Formatting and Quantization 

The goal of hand-tuned machine learning features used widely in the literature, is to 

produce easily distinguishable values for various data classes. A good feature remains 

invariant to the slight changes in the input pattern for a particular class and tends to 

produce roughly similar values for patterns belonging to the same class. The same effect 

is achieved by quantizing the input signal so that input signals that bear slight differences 

with each other, are quantized into similar looking patterns. Input quantization has a 

proven positive impact on RNN accuracy [107]. So, a quantization strategy is chosen that 

quantizes the sensor data to three levels (rise/fall/no change). It may be noted that the 

quantization used here is applied to both the training and test data streams. Equation 4 

outlines the quantization function for the incoming observation at time t.  

𝑖𝑓 𝑜𝑏𝑠𝑡 > 𝑜𝑏𝑠𝑡+1 + 𝜖                              1(𝑟𝑖𝑠𝑒)                                          

𝑖𝑓 𝑜𝑏𝑠𝑡 < 𝑜𝑏𝑠𝑡+1 − 𝜖                         − 1(𝑓𝑎𝑙𝑙)                                          

𝑖𝑓 𝑎𝑏𝑠(𝑜𝑏𝑠𝑡+1 − 𝑜𝑏𝑠𝑡) ≤ 𝜖                   0(𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒)       (4) 

Literature suggests that a reasonable value for 𝜖 can be (𝜇𝑎 + 𝜎𝑎/2) [108], where 𝜇𝑎 and 

𝜎𝑎 are the mean and variance for the input distribution. Thus, the value of 𝜖 depends upon 

the distribution of observation elements [𝑉𝑝𝑝1(𝑡), 𝑉𝑝𝑝2(𝑡), 𝑇𝑎𝑚𝑏(𝑡), 𝑃𝐼𝑅(𝑡)]. 
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4.1.1.2. Sliding Window Input Approach 

The training dataset obsT is initialized where each element is created by sliding a fixed-

horizon window of length l over the 4-D training input time-series consisting of following 

elements [𝑉𝑝𝑝1(𝑡),𝑉𝑝𝑝2(𝑡),𝑇𝑎𝑚𝑏(𝑡),𝑃𝐼𝑅(𝑡)]. The labels labelT are then initialized where 

each element corresponds to each window in obsT. An element is set to “occupied” if a 

surveillance camera-based ground-truthT indicates that human subject was present for 

more than 50% of observations in the FOV of the sensor. Otherwise, the element is set to 

“unoccupied”. A suitable window length (l) is found to be a critical parameter that has a 

pronounced impact on the over network accuracy. This impact will be later highlighted in 

the sub-section titled “Performance Evaluation of LSTM and other RNNs” in the chapter. 

4.1.1.3. RNN Architecture 

A well-cited deep forward RNN model proposed in [109], which contains multiple layers 

of recurrent units that are connected “forward” in time, is used as a reference model for 

the proposed RNN architecture. This model architecture is simple yet powerful enough to 

produce reliable results over publicly available datasets which consist of time-series data. 

The online LSTM model shown in figure 15 contains a single hidden layer of 16 recurrent 

neurons. During the evaluation phase, all RNN models use 3, 6, 9 and 16 neurons 

depending upon the experiment configuration. There are also 4 input neurons to match the 

number of input time-series from the sensor node i.e., [𝑉𝑝𝑝1(𝑡),𝑉𝑝𝑝2(𝑡),𝑇𝑎𝑚𝑏(𝑡),𝑃𝐼𝑅(𝑡)]. 

There are two output neurons to match the output classes corresponding to “occupied” and 

“unoccupied” status. 
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4.1.1.4. Performance Evaluation of LSTM and other RNNs 

A comprehensive search for suitable RNNs was performed. The analysis included testing 

the collected dataset over LSTM, Bi-directional LSTM, CTRNN, MGU [110] and GRU 

networks. The observation window length l was also varied over a reasonable range to see 

if certain networks perform better than others. It was found that for l=60 sec, the accuracy 

was highest across all architectures. This indicates that the most effective discriminating 

features exist over a period of 60 seconds. It is important to mention here that SLEEPIR 

collects two consecutive observations over a span of 60 seconds. Moreover, the number 

of nodes was also varied for each network to see the impact of network size over accuracy. 

The network size was varied to improve classifier efficiency as the classifier is expected 

to perform in an online pipeline (refer to figure 14 to see pipeline). Table 9 and figure 16 

outlines the performance evaluation results for RNN classifiers. It was observed that 

LSTM and Bi-LSTM outperformed other RNNs in nearly all configurations. LSTM was 

selected as our network of choice as it is relatively less expensive in terms of resources. A 

Figure 16. Accuracy comparison between different RNNs with varying network size and 

observation window length l. Reprinted with permission from [3]. 
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relatively high ratio of false negatives was encountered compared to false positives. 

Reasons for this are discussed in the section titled “PF Design” of this chapter. 

Table IX. Impact of Observation Window Size and Network Architecture on Accuracy. Reprinted 

with permission from [3]. 

Observation 

window length 

Average accuracy for 16 neurons hidden layer model. 

(50% labeling threshold) Quantized Observations 

Bi-LSTM LSTM CTRNN GRU MGU 

30 sec 95.2% 92.8% 89.0% 84.8% 82.4% 

45 sec 96.6% 93.5% 89.2% 86.9% 81.3% 

60 sec 98.1% 95.6% 93.9% 91.1% 86.2% 

90 sec 85.1% 83.8% 83.0% 82.4% 78.3% 

4.2. PF Design 

After the system observations are binarized via the proposed ML architecture, 

these observations are used to update a PF. The elements of this filter that include 

likelihood model, filter state, update and sampling modules, are detailed in the remaining 

of this section. 

Figure 17. The SLEEPIR and PIR sensor multimodal detection probability distribution is shown. 

The distribution works as a measurement update for the SLEEPIR and PIR sensors. 𝒐𝒊 is the sensor 

footprint (~𝟒𝒎𝟐) for the SLEEPIR sensor while 𝒔𝒊 is the sensor footprint (~𝟏𝟖𝒎𝟐) for the PIR 

sensor. Reprinted with permission from [3]. 
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4.2.1. Sensor Likelihood Model 

A likelihood model based on the sensor coverage parameters and inter-sensor 

correlation measure, is proposed in this section. An observation from a sensor node that 

includes a SLEEPIR and PIR sensor, has a distribution of detection probabilities 

associated to the area that the sensor observes. This distribution of detection probability is 

based on SLEEPIR sensor range and FoV experiments conducted in the earlier works [7, 

10]. These works also discuss in detail the sensor installation height and orientation 

choices. Both FoV and range of the sensor are listed in chapter 1. Moreover, as a result of 

experimentation in [10], more specifically, it was found that for sensor installed at a height 

of 2.8 meters, the radius of SLEEPIR footprint is 1.2 meters while the radius of concentric 

PIR sensor footprint is 2.4 meters. These footprints are visually represented in figure 3 

(chapter 1), where a sensor cone is also shown. Each sensor generates a timestamped log 

of occupancy status observations as follows. 

𝐷𝑡
𝑖𝑆𝐿𝐸𝐸𝑃𝐼𝑅 = {(𝑖, 𝑡): 𝑖 𝜖 𝑁,  𝑡 𝜖 ℝ+} 

𝐷𝑡
𝑖𝑃𝐼𝑅 = {(𝑖, 𝑡): 𝑖 𝜖 𝑁,  𝑡 𝜖 ℝ+}                           (5) 

In the equation 5 (𝑖, 𝑡) denotes that sensor i triggers at time t. Figure 1 shows the 

set of locations denoted by index i i.e., 𝑋1, 𝑋2 , 𝑋3 .Whenever an occupancy 𝐷𝑡
𝑖 observation 

indicates a human detection, the variance is adjusted for bivariate Gaussian update in the 

following way. 

           𝜎𝑡
𝑣𝑆𝐿𝐸𝐸𝑃𝐼𝑅 =

1

𝜌𝑖𝑣
× 𝜎𝑡

𝑣𝑆𝐿𝐸𝐸𝑃𝐼𝑅             

𝜎𝑡
𝑣𝑃𝐼𝑅 =

1

𝛾𝑖𝑣
× 𝜎𝑡

𝑣𝑃𝐼𝑅
                                                                          (6) 
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Here matrices 𝛾 and 𝜌 represent the Pearson-correlation coefficient between smoothed 

sensor observations 𝐷𝑡
𝑖𝑃𝐼𝑅  and 𝐷𝑡

𝑖𝑆𝐿𝐸𝐸𝑃𝐼𝑅
 respectively. For example, 𝜌𝑖𝑖, would represent 

the sensor observation correlation with itself which will always be 1. In case sensor i is 

not correlated with sensor v, 𝜌𝑖𝑣  will be near the value of 0. In other words, the inter-sensor 

correlation matrices ensure that if sensor i triggers and it happens to have its observations 

correlated to sensor v, the sensor model will indicate the sensor v as a triggering sensor as 

well albeit with a reduced amount of certainty. This amount depends upon the level of 

correlation present between two sensors. It must be noted that we smooth the observations 

by a certain time-window 𝜏 Thus, the correlation represented in 𝛾 and 𝜌 is a correlation 

over a time-window 𝜏. 

The mean 𝜇𝑖 for update distribution for sensor i, is set to the 2D sensor coordinates 

in the map while unadjusted variance 𝜎𝑖  is set according to the following evaluation 

functions. 

𝜎𝑡
𝑖𝑆𝐿𝐸𝐸𝑃𝐼𝑅 ∝ (

𝑜𝑖

𝑠𝑖+𝑙𝑖
),   𝜎𝑡

𝑖𝑃𝐼𝑅 ∝ (
𝑜𝑖+𝑠𝑖

𝑙𝑖
)                        (7) 

𝑏𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐺𝑒𝑛 is defined as a function so we can generate a single mode 

bivariate gaussian distribution for PIR sensor. 𝑚𝑚𝐵𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐺𝑒𝑛 function is 

then defined to generate the bimodal Gaussian distribution for SLEEPIR sensor. Both 

distributions are shown in figure 17 and function definitions are listed in equation 8.  

 

𝜋𝑖𝑃𝐼𝑅 = 𝑏𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐺𝑒𝑛(𝜇𝑖, 𝜎𝑖𝑃𝐼𝑅)                                                    

𝜋𝑖𝑆𝐿𝐸𝐸𝑃𝐼𝑅1 = 𝑚𝑚𝐵𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐺𝑒𝑛(𝜇𝑖 , 𝜎𝑖𝑆𝐿𝐸𝐸𝑃𝐼𝑅)    (8) 

The variance of these gaussian distributions depends upon the size of areas falling 

under each of their observation cones. Thus, 𝜎𝑡
𝑖𝑆𝐿𝐸𝐸𝑃𝐼𝑅  and 𝜎𝑡

𝑖𝑃𝐼𝑅  represent the uncertainty 
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for measurement update distributions 𝜋𝑖𝑃𝐼𝑅 and 𝜋𝑖𝑆𝐿𝐸𝐸𝑃𝐼𝑅 .  𝜎𝑡
𝑖𝑆𝐿𝐸𝐸𝑃𝐼𝑅  and 𝜎𝑡

𝑖𝑃𝐼𝑅  are 

directly proportional to the ratio of area observed by the sensors to the total area of the 

room the sensor is installed in. 

4.2.2. Particle Filter State 

The goal of the filter is to estimate the occupancy of the observed area with a level 

of certainty. This work represents the occupancy belief over the expanse of observed space 

via a multimodal Gaussian bivariate distribution represented by 𝐿𝑡. Variable 𝐿𝑡 is defined 

as 

𝐿𝑡 = {𝜋𝑡
𝑢𝑣}          (9) 

𝑤ℎ𝑒𝑟𝑒, 𝑢 = −𝑙𝑖𝑚𝑥 + 𝑟, −𝑙𝑖𝑚𝑥 + 2𝑟,… , 𝑙𝑖𝑚𝑥                 

𝑎𝑛𝑑      𝑣 = −𝑙𝑖𝑚𝑦 + 𝑟,−𝑙𝑖𝑚𝑦 + 2𝑟, … , 𝑙𝑖𝑚𝑦                

Here 𝑢 𝑎𝑛𝑑 𝑣 are indexes that run through the range of weights 𝜋 which is a bivariate 

probability density function (pdf) that represents the bivariate probability distribution 

indicating the occupancy probability across the 2D spatial expanse of area under 

monitoring. The area dimensions are 2𝑙𝑖𝑚𝑥 × 2𝑙𝑖𝑚𝑦. Here changing the value of 𝑟 (or 

resolution) changes the size of domain of the distribution function. It was found 

empirically that an optimal value for 𝑟 is 0.5 meters. The value of 𝑟 can impact the 

accuracy and execution efficiency of the PF. 

Each particle in the filter contains a varying multimodal bivariate Gaussian 

distribution for the area under observation. 𝑄 particles are initialized under certain initial 

conditions. 

𝑃𝑡
𝑗
= 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝐿𝑡

𝑗)  𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,… , 𝑄                                     (10) 
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Each particle is initialized by adding normal random noise to an initial hypothetical 

update 𝑈0 where no sensor is triggered. The update 𝑈 is the based on augmented sensor 

signals received from all sensors in the system i.e., 𝑋1, 𝑋2  𝑜𝑟 𝑋3. We use index j as a 

particle index invariably for the remaining article. 

4.2.3. Prediction Step  

It is well known that the PF involves repetitive prediction and update steps. In the 

prediction step, firstly a uniformly distributed random number ℎ ∈ [0,1] is generated and 

then it is used to select sample 𝑃𝑡−1
𝑗

 from all samples at time 𝑡 − 1 according to their 

weights 𝑤𝑡
𝑖. Then the prediction step is performed for each 𝑃𝑡

𝑗
 as follows 

𝐿𝑡+1
𝑗

= 𝐿𝑡
𝑗
+ 𝑛𝑠𝑝𝑟𝑒𝑎𝑑       (11) 

Here 𝑛𝑠is a multimodal normally distributed random noise that has modes centered at 

sensor locations 𝜇𝑖. Essentially 𝑛𝑠 factors in the variation present in the rate at which 

human subjects move their positions from sensor to sensor within the monitored area. 

4.2.4. Update Step 

For each particle 𝑃𝑡
𝑗
, following steps update the particle variable 𝐿𝑡

𝑗  at each time-

step via a Gaussian update 𝑈𝑡 via the following expression. 

𝐿𝑡+1
𝑗

= 𝐿𝑡
𝑗
+ 𝛿𝑡+1(𝑈𝑡+1

𝑖 − 𝐿𝑡
𝑗
)                      (12) 

Here, 

𝑈𝑡 = {𝜋𝑡
𝑢𝑣} 

Variance 𝜎𝑡
𝑖 for 𝑈𝑡 is already defined in the earlier section. u and v have already been 

defined while defining the PF state. Moreover, 
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𝛿𝑡+1 =  
𝜎𝑡
2

𝜎𝑡
2+𝜎𝑡+1

2                                          (13) 

Here if 𝑈𝑡+1
𝑖  has high variance relative to 𝑈𝑡

𝑖  then 𝛿𝑡+1 is small thus it has little impact on 

value of 𝐿𝑡+1
𝑗

. This ensures that updates which have more chance of error are factored-in 

less into our current belief 𝐿𝑡+1
𝑗

. 

4.2.5. Sampling Step 

In the sampling step, weight for each particle is set and then perform a weighted 

sampling to select particles for prediction step. Weights for particles are set higher that 

have smaller Bhattacharya distance [111] (measures the similarity between two 

distributions). Since each particle, 𝑃𝑡
𝑗
 is comprised of bivariate distribution 𝐿𝑡

𝑗
, the 

bivariate Bhattacharya distance between the update 𝑈𝑡  and each particle 𝐿𝑡
𝑗
, is evaluated. 

The following step presents the probability of a particle to be sampled via the Bhattacharya 

distance-based weights.  

𝑃𝑟𝑜𝑏𝑗(𝑤𝑡
𝑗|𝑈𝑡) =

1

√2𝜋𝛿𝑡
= 𝑒

−
(𝐵ℎ𝑎𝑡𝑡𝑎𝑦𝑎𝑐ℎ𝑎𝑟𝑦𝑎(𝑃𝑡

𝑗
 −𝑈𝑡))

2

2(𝛿𝑡)
2   (13) 

4.3. Discussion 

Sensor model-based updates are critical to the performance of the proposed filter. 

These updates, if modeled correctly, can optimally select, and help propagate particles that 

are very close to the real-world occupancy scenario. It is thus useful to visualize and have 

a critical look at one example of a sensor model-based update. A bivariate Gaussian update 

in Figure 18 can be seen. Since the sensors at locations 𝑋1 and 𝑋2 have correlated 

observations, the update factors-in this correlation and hypothesizes a more realistic 
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update. It may be highlighted here that correlation evaluation can be erroneous in case 

there is infra-red (IR) noise present in the observed space. This noise can include electronic 

devices and objects that efficiently absorb the heat radiated by the human body. It may 

also be observed that particle sensor model heavily relies on certain parameters that are 

rooted in real world environmental factors and sensor limitations. A list of these tunable 

parameters is provided in table 10. Any changes in these parameters can have a 

pronounced impact on PF accuracy. 

Table X. Brief Description of Method Parameters. Reprinted with permission from [3]. 

Parameter Explanation 

𝑉𝑝𝑝𝑟, 𝑉𝑝𝑝𝑓 

thresholds 
Both thresholds help us deal with the SLEEPIR sensor noise as detailed in [112] 

𝜌𝑢𝑣 , 𝛾𝑢𝑣 

 

Time-window based correlation coefficient for human detection between 

observation time-series collected at two locations. These helps us configure the 

sensor model. 

𝛽𝑖 
This threshold is applied to the value of bivariate gaussian curve at its mean in 𝐿𝑡

𝑗
. 

If this value is beyond this threshold, human presence is established. 

𝜂𝑡 , 𝜂𝑠𝑝𝑟𝑒𝑎𝑑  

These are gaussian noise parameters for the filter. 𝜂𝑡 is the noise present in the 

timestamps of the updates. 𝜂𝑠𝑝𝑟𝑒𝑎𝑑  is the noise present in the velocity of human 

subjects. 

Figure 18. Inset label 1 shows the bivariate multimodal distribution for the update produced by the 

sensor model when the subject is near sensor X2. Inset label 2 shows the gaussian profile for the 

update when the subject leaves the vicinity of sensor X2 and approaches sensor X1. Both x and y axis 

are labeled in meters. Reprinted with permission from [3]. 
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4.4.  Results 

4.4.1. Dataset 

The used dataset employs three SLEEPIR sensor nodes. The nodes are deployed 

in two configurations as shown in figure 13. Each node collects the observation every 30 

seconds. The SLEEPIR observations 𝐷𝑡
𝑖𝑆𝐿𝐸𝐸𝑃𝐼𝑅  were evaluated using the raw SLEEPIR 

sensor voltage values. Certain thresholds were used to remove noisy observations as per 

the literature presented in [10]. Surveillance cameras were used to label the ground truth 

Data for a total of 15 days was collected. 7 days were used to extract correlation matrices 

𝛾 and 𝜌 for sensors.  It may be noted here that distinct correlation matrices were extracted 

for each of the floorplan scenarios presented in Figure 13. The observed correlation 

between sensor pairs within a scenario plays a crucial role in the performance of particle 

filter-based occupancy detection. It was observed that Peterson’s correlation coefficient 

evaluated over a longer period was higher and thus produced better results. Figure 19 

Figure 19. Peterson's correlation coefficient for the sensor pair X1 and X2 in scenario 2, is shown to 

increase as the timespan for observations is increased from 1 day to 7 days. Reprinted with 

permission from [3]. 
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illustrates the relationship between the observation timespan and the evaluated correlation 

for a particular sensor pair. After using 7 days of data to extract correlation matrices, we 

used the remaining 8 days of test data for evaluation. The observations were down sampled 

to 1 observation per minute. This resulted in a total of 21600 observations within the 

dataset. A total of 4 subjects (2 males and 2 females) were employed to gather the dataset. 

4.4.2. Accuracy Results 

This work claims to minimize the sensor footprint and deliver comparable human 

presence accuracy when compared to statistical ML methods. The impact of the number 

of sensors on occupancy detection accuracy was also studied. It was found that 3 sensor 

nodes suffice the 95% true positive accuracy criteria mentioned in the US Department of 

Energy SENSOR program outline[79]. The results of this comparative experiment are 

listed in Table 11. 

Table XI. Impact of Sensor Nodes Reduction in the Network. Reprinted with permission from [3]. 

Date Scenario 
1-Sensor Accuracy  

(𝑿𝟑) (%) 

2-Sensor Accuracy  

(𝑿𝟐, 𝑿𝟑) (%) 

3-Sensor Accuracy 

(𝑿𝟏, 𝑿𝟐, 𝑿𝟑) (%) 

25-Feb 1 27.73 76.91 98.83 

26-Feb 1 24.04 75.11 94.21 

1-Mar 1 19.60 77.87 95.70 

2-Mar 1 22.64 67.25 93.37 

6-Mar 1 20.01 79.88 95.69 

20-Oct 2 46.49 88.53 96.55 

3-Nov 2 53.91 81.03 97.34 

4-Nov 2 58.27 85.35 98.10 

The proposed system-level PF algorithm was used for the experiment results 

shown in Table 11. As a consequence of this experiment, observations from 3 nodes (3 

PIR and 3 SLEEPIR sensors) were employed to compare the accuracy between the sensor-
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level algorithm (Statistical ML) [10] and the system-level algorithms (EKF[19], PF and 

proposed PF with ML algorithms). Sensor-level machine learning-based occupancy 

detection algorithm results presented in [10] are used as a baseline for this analysis. The 

EKF-based networked sensor estimation algorithm given in [45] was applied to our dataset 

and inferior accuracy results were achieved compared to our proposed PF algorithm. Not 

only, an accuracy comparison is done between EKF and PF approaches, but the 

performance penalty of choosing to prefer PF over EKF to achieve higher accuracy is also 

highlighted. Table 12 shows the average processing time for a single observation of a 

window length of 60 secs. The execution times were measured on a Raspberry Pi 4 using 

a 64-quad-core Cortex-A72 (ARM v8) processor. Machine learning layers were excluded 

from the performance comparison as the computation cost for the ML inference is 

negligible. It is shown in Figure 20 that the proposed Particle Filtering approach can 

provide superior accuracy when compared to the accuracy achieved via an ML-based 

statistical thresholding approach [10] and a system-level EKF-based occupancy estimation 

algorithm [113]. 

Table XII. Accuracy Comparison between Baseline and Proposed Models. Reprinted with 

permission from [3]. 

Date Scenario 

EKF 
Statistical ML 

(%) 

PF only (%) PF 

with ML 

(%) 
acc (%) 

avg exec time 

(ms) 
acc (%) 

avg exec time 

(ms) 

25-Feb 1 94.61 88 90.82 98.35 461 98.83 

26-Feb 1 90.24 86 89.71 91.51 738 94.21 

1-Mar 1 86.35 87 81.91 95.47 693 95.70 

2-Mar 1 90.02 89 87.96 92.83 727 93.37 

6-Mar 1 86.15 88 80.73 94.22 824 95.69 

20-Oct 2 84.33 86 76.27 92.36 720 96.55 

3-Nov 2 89.70 87 88.25 91.72 602 97.34 

4-Nov 2 91.86 87 89.46 94.51 415 98.10 



 

76 

 

When compared to [10], the proposed work was also able to reduce the number of 

sensors that are required to determine occupancy in the indoor space. The last two columns 

of Table 12 show human occupancy accuracy via two input pre-processing approaches (a) 

The system-level human occupancy is established via a PF that uses a fixed threshold to 

convert incoming sensor voltage into binary inputs. This is termed the “PF only” approach. 

(b) The system-level human occupancy is established via the proposed machine learning 

classifier that is described in the last section. This is termed as “PF with ML thresholding” 

approach. For both these approaches, the system level-human occupancy is established if 

the PF output probability density function results in at least a single occupancy peak. 

Examples of such peaks are shown in Figure 18 in elevated temperature color shades.  

Figure 20. Accuracy comparison with baseline Statistical Machine Learning Model. Accuracy 

improvement due to PF (green) and added improvement via adding ML in the pipeline (light blue) 

is shown. The line graph shows the percentage of occupied observations in the test-dataset. 

Reprinted with permission from [3]. 
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Figure 20, via the line graph, also shows the percentage of observations in the test 

dataset where at least one occupant was present in the observed area. The presence of the 

occupant is established via ground truth data. This percentage is important as the system 

does not encounter significant detection errors whenever human subjects are not around. 

We also tested the proposed method using two test-bed scenarios (see Figure 13). The first 

scenario tests the method performance in space that is very restrictive for the sensor’s 

range and the correlation between the sensors is low as each sensor is housed in an 

independent room. The second scenario has more open space available to the sensor nodes. 

Moreover, two sensor nodes, although far from each other, are housed within the same 

enclosure i.e., a large living room.  

4.5. Results Discussion 

Despite the robust performance at the system level, delivered by the PF, false 

negatives remain a problem at the sensor level. The IR noise present in the environment 

is mostly due to the heat transferred to the objects with which the human body gets in 

contact. These keep emitting IR radiation even after the human subject leaves the observed 

area. Moreover, the IR radiation emitted by certain bodies that have temperature and 

emissivity values similar to the human body acts as noise whenever a classifier is trained 

for occupancy decisions. Figure 21 shows examples of IR noise within the testbed that 

was discovered during the experimentation. False positives and false negatives quantities 

for each day of the test dataset are shown in Figure 22.  

It must be mentioned here that false positives generated due to objects that acquire 

human body temperature are transient as these objects cool down within minutes. This 
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research while conducted using a system-level occupancy detection algorithm, points 

towards the need for a node-level ML training algorithm that can discriminate between 

the human body that maintains a near-constant temperature and objects that are in the 

process of cooling down. It can be observed that the proposed method consistently 

produces more false negatives compared to false positives. This is obviously due to the IR 

noise present in the environment. It can also be seen that certain false positives are also 

produced. There are two primary contributors to false negatives. Firstly, the IR radiated 

by certain subjects is simply not enough due to the small body size and clothing. Secondly, 

certain PF parameters may not be tuned well to suit the test-bed dynamics e.g., Gaussian 

noise parameters 𝜂𝑡 , 𝜂𝑠𝑝𝑟𝑒𝑎𝑑  may need to be hand-tuned to be sensitive to the speed with 

which human subject approaches and leaves the sensor vicinity. One of the possible 

solutions is adaptive PF parameter tuning but further analysis and investigation are 

necessary to propose a parameter tuning strategy. The accuracy results are highly reliant 

on the correlation measure between the observations from any two sensor nodes used for 

experimentation.  

Figure 21. (Left) The mattress still emitting IR after 60 seconds have passed since the subject left the 

bed. (Right) Top view of a chair, a laptop, and a charger. Chair seat is still radiating IR after the 

human subject has left. All IR sources mentioned here emit IR noise for a machine learning based 

classifier. Reprinted with permission from [3]. 



 

79 

 

4.6. Conclusion 

The proposed method delivers robust results in terms of human occupancy 

detection while using a small number of low-powered SLEEPIR and PIR sensors. The 

model exploits the inter-location observation correlation between sensors to generate 

Figure 22. The confusion matrices showing the performance comparison between the state-of-the-

art Statistical ML occupancy detection method and the proposed method. The occupancy ground 

truth was collected via surveillance cameras. Reprinted with permission from [3]. 
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close-to real-world measurement updates. Moreover, it exploits the temporal bounds on 

the position change rate of human subjects within the environment. The novel bivariate 

update distribution generated by the sensor model ensures that realistic and not random 

hypotheses (particles) are generated for the PF to sample from. Not only is this method 

comparable to the contemporary statistical ML method [10] but it also attempts to reduce 

the number of required sensors to deliver the same accuracy for human presence detection. 

The method is evaluated over two different testbeds with different sensor configurations. 

The consistent accuracy reveals the scalability of the proposed method. Moreover, the 

method’s dependence on ground truth to extract observation correlation between different 

sensors is dependent on the accuracy of ground-truth annotation. As a future effort, 

alternative methods can be explored to avoid the dependence on historical information 

like observation correlation between sensors.  
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5. NETWORK-LEVEL: BF + LSTM4 

To address the issue that standard PIR sensors can only detect non-stationary 

occupants, a networked SLEEPIR sensor node [7, 10] is utilized that can detect both 

stationary and moving occupants by adding an electronic PDLC infrared shutter to a 

standard PIR sensor [18, 88].  In this chapter, a BF-based algorithm is proposed that uses 

a network of SLEEPIR sensor nodes to improve the otherwise less-than-perfect occupancy 

detection capability of individual nodes [88]. 

The BF-based algorithm is relatively more robust to environmental infra-red 

disturbances when compared to our previously proposed PF-based algorithm in the last 

chapter. Moreover, unlike the PF-based algorithm, it also avoids using historical sensor 

data to be able to filter out node-level noisy observations. The proposed method also 

allows the use of a minimal number of adjacent sensor nodes to detect the occupancy of 

an entire covered space of interest. The presented approach utilizes an MDP formulation 

[24] to model the indoor occupancy states and occupancy transition probabilities between 

states. FMA is performed on an underlying MDP, to evaluate transition probability and 

expected time to travel between two occupancy states. These two parameters play a crucial 

role in filtering out environmental infrared disturbances.  

The BF-based algorithm has the following key advantages : (i) superior detection 

accuracy and computational efficiency compared to the previously proposed PF[3] and 

 

4 Part of this chapter is reprinted, with permission, from “Bayes Filter-based Occupancy Detection Using 

Networked SLEEPIR Sensors" By Emad-ud-din, M., Chen, Z., Wu, L., Shen, Q., and Y. Wang (2023). 

IEEE SENSORS JOURNAL Pre-print. Copyright © 2023 IEEE 
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EKF [114] based method; (ii) superior occupancy estimation accuracy when compared to 

the union of individual node-level accuracies and (iii) independence from historical sensor 

data to filter out noisy sensor node observations. 

The next section of the chapter provides an overview of the system inputs and pre-

processing algorithm. Next, the section titled “Bayes Filter Design” provides a detailed 

description of the method. Then, in the section titled “Discussion”, the proposed method’s 

strengths and weaknesses are listed. The section titled “Results” outlines the dataset 

collection strategy and highlights the method’s comparative performance. The last section 

of the chapter provides a conclusion to the proposed work. 

5.1. System Input and Pre-processing Algorithm 

The overall system flowchart is presented in Fig. 23. The raw SLEEPIR sensor 

observations are extracted from the SLEEPIR sensor node using a Bluetooth 

Figure 23. BF based occupancy detection method flow chart. Networked sensor nodes generate 

voltage, ambient temperature, and PIR data. The voltage is converted to binary occupancy 

observations via LSTM classifier. The node-level occupancy observations then update a network-

level occupancy estimate via BF. Reprinted with permission from [1]. 
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communication protocol. The sensor and communication platform details are presented in 

Chapter 1. A. We present a brief overall algorithm flow below that summarizes the 

flowchart shown in figure 23. 

1. The raw sensor output (which includes SLEEPIR sensor voltage, PIR sensor binary 

output, and ambient temperature) is collected from each sensor node via a 

Bluetooth communication protocol. 

2. Raw voltage values from the SLEEPIR sensor are pre-processed using an LSTM 

Network-based thresholding algorithm. This algorithm is detailed in the upcoming 

sub-section. This thresholding algorithm classifies the raw SLEEPIR sensor 

observations and outputs in binary whether the sensor has detected human 

occupancy or not. The traditional PIR sensor output is already binary, so it does 

not require preprocessing. 

3. The binarized observations are converted into a Bayesian update 𝑈𝑡 via a sensor 

model. 𝑈𝑡  is used to update our hypothesis 𝐿𝑡 that points towards the occupancy 

state we believe the system to be currently in. This sensor model merges the output 

from both the SLEEPIR sensor and the traditional PIR sensor into a single BF 

update. This model is described in detail in the section titled “Bayes Filter Design” 

in this chapter.  

4. The BF receives these periodic updates from the sensor model function and 

estimates the probability of human occupancy at each of the locations represented 

in the BF state. The world constraints are embedded in the sensor model and BF 

design which serves to produce a robust human occupancy belief. Details of the 
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BF sensor model, state update, and prediction are presented in the section titled 

“Bayes Filter Design” in this chapter. 

 

5.1.1. LSTM classifier 

As the sensor node generates time-series observations consisting of SLEEPIR raw voltage 

output 𝑉𝑜𝑢𝑡(𝑡) in equation 1, ambient temperature 𝑇𝑎𝑚𝑏(𝑡) and digital PIR sensor output 

𝑃𝐼𝑅(𝑡), we employ RNNs to classify these observations to indicate whether the incoming 

observation represents human occupancy or not. RNNs when compared to the typical 

FFNNs, have been shown to achieve higher accuracy with time-series data [106], as these 

can process and encode the sequential temporal information contained in time-series data. 

In the implemented pipeline, firstly the incoming time-series data from the sensor node is 

zero-centered and normalized. The input time series is then divided into pre-determined-

sized observation windows. Each window is then labeled as either occupied or unoccupied 

                                                  

      

     

    

     

      

         

     

 
  
 
  
  
  
 
 
    

 
   

 
   

 
 
 

 
 
   

 
 
  
 
 
 

          

     

Figure 24. LSTM network architecture for SLEEPIR raw observation binary classifier. Reprinted 

with permission from [1]. 
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based on the available ground truth gathered via the surveillance camera installed at the 

testbed. Lastly, an LSTM Network is trained with the dataset. The trained network (shown 

in figure 24) is deployed so that the network can distinguish between the observations 

indicating occupancy versus those indicating non-occupancy. The Machine Learning 

(ML) based thresholding algorithm is listed in the following sub-sections. 

5.1.1.1. Input Formatting 

The hand-tuned ML features are used widely in the literature to produce easily 

distinguishable values for different data classes [103]. The input could have been chosen 

to be quantized as input quantization has a proven positive impact on RNN accuracy, 

provided there is limited information loss [107] but insignificant accuracy improvement 

was noticed at the cost quantization due to the information loss. Thus, the quantization 

approach was not opted for. 

5.1.1.2. Sliding Window Input Approach 

The training dataset obsT is initialized where each element is created by sliding a fixed-

horizon window of length l over the 4-D training input time-series consisting of the 

following elements [𝑉𝑝𝑝1(𝑡),𝑉𝑝𝑝2(𝑡),𝑇𝑎𝑚𝑏(𝑡),𝑃𝐼𝑅(𝑡)]. The labels labelT where each 

element corresponds to each window in obsT, are then initialized. An element is set to 

“occupied” if a surveillance camera-based ground-truthT indicates that the human subject 

was present for more than 50% of observations in the Field of view (FoV) of the sensor. 

Otherwise, the element is set to “unoccupied”. A suitable window length (l) is known to 

be a critical parameter that has a pronounced impact on over-network accuracy [115]. This 

impact will be highlighted in the next sub-section. 
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5.1.1.3. LSTM Network Architecture 

A highly cited deep forward RNN model proposed in [109], which contains multiple layers 

of recurrent units that are connected “forward” in time, is used as a reference ML model. 

This model architecture is simple yet powerful enough to produce reliable results over 

publicly available datasets which consist of time-series data. The online LSTM model 

shown in figure 24 contains a single hidden layer of 16 recurrent neurons. During the 

evaluation phase, all RNN models use 3, 6, 9, and 16 neurons depending upon the 

experiment configuration. There are also 4 input neurons to match the number of input 

time series from the sensor node i.e., [𝑉𝑝𝑝1(𝑡),𝑉𝑝𝑝2(𝑡),𝑇𝑎𝑚𝑏(𝑡),𝑃𝐼𝑅(𝑡)]. There are two 

output neurons to match the output classes corresponding to “occupied” and “unoccupied” 

status. 

In Chapter 4, a comprehensive search for suitable RNNs was performed for the 

occupancy detection application of SLEEPIR sensors. The analysis included testing the 

collected dataset over LSTM, Bi-directional LSTM (Bi-LSTM), CTRNN, MGU [110], 

and GRU networks. Observation window length l was varied over a reasonable range to 

see if certain networks perform better than others. It was found that for l=60 sec, the 

accuracy was highest across all architectures. This result signified that the most effective 

discriminating features exist over a window length of 60 seconds. It must be mentioned 

here that SLEEPIR collects two consecutive observations over a span of 60 seconds. The 

analysis in Chapter 4 concluded that LSTM and Bi-LSTM outperformed other RNNs in 

nearly all window length configurations (l=30, 45, 60, 90 seconds). Thus, LSTM was 

chosen as our network of choice as it is relatively less expensive in terms of resources 
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when compared to Bi-LSTM. 

5.2. Bayes Filter Design 

After the node-level observations are binarized via the proposed ML architecture, 

these observations are used to update a BF which produces a network-level occupancy 

estimate. BF provides a real-time posterior probability density function (pdf) of the state 

(occupancy belief) based on available information. The BF is thus ‘optimal’ as it seeks the 

posterior distribution which integrates and uses all of the available information expressed 

by probabilities [116]. The network-level occupancy detection is a two-tiered algorithm. 

In the first tier, we shape the occupancy state of the monitored space as an MDP as shown 

in figure 25. The MDP represents the dynamics of the real world. When MDP is presented 

with a goal state G it suggests an optimal policy (a set of actions that results in a set of 

state transitions) that leads us to G. The notion of goal state G is useful when we need to 

evaluate the expected time to transition from any occupancy state within the MDP to the 

goal state G. The second tier consists of a BF that periodically receives the occupancy 

Figure 25. The underlying MDP is used by FMA. Each state s consists of a possible combination of 

sensor nodes where occupancy can be detected. The MDP consists of a total of 𝟐𝒏states where n is 

the number of networked sensor nodes. Action a connect the states and the probability for each 

action is defined by the Node Adjacency Matrix and our assumptions about how quickly can the 

occupancy state change. Reprinted with permission from [1]. 
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status from individual SLEEPIR nodes. When individual SLEEPIR nodes point towards 

an occupancy state, we consider that state as a goal state G. Then an optimal policy π is 

generated by the MDP model to reach goal G. BF keeps on updating its belief based on 

how well the incoming occupancy status observations conform to the suggested policy π. 

In case the incoming occupancy observation conforms well to the MDP suggested policy 

π, the observation is given a higher likelihood compared to a poorly conforming 

observation. The sensor model for the BF maps the incoming observations to the 

likelihood values of the overall observed space as being occupied (or unoccupied). 

5.2.1. MDP and State Transition Matrix Evaluation 

Before the elements of BF can be described, the steps that help determine the State 

Transition Matrix must be described in detail i.e., the MDP formulation, policy generation 

and execution, and Fundamental Markov Analysis for Markov Chains. 

5.2.1.1. MDP Formulation 

Each state of the MDP represents a possible combination of the occupancy status of each 

sensor. For example, a state where the Entrance and Kitchen node indicate occupancy and 

the remaining nodes indicate unoccupancy, is represented by 𝑋4𝑋5. Similarly, a state 

where all nodes are indicating occupancy will be represented by 𝑋1𝑋2𝑋3𝑋4𝑋5. A Markov 

Decision Process with mortality is a tuple as per its standard definition [24]. 

⟨𝒮,𝒜,𝒫, ℛ, γ⟩ 

where: 

• 𝒮 is a finite set of states s. Each state represents a possible occupancy state for the 

observed area. 
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• 𝒜 is a finite set of actions where each of its elements a𝑠 is an action intended for 

a transition to the state s. 

• 𝒫 is a state transition probability function 𝒫𝑠𝑠′
𝒶 = 𝑃[𝒮𝑡+1 = 𝑠

′|𝒮𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

• ℛ is a reward function defined by expected value function E: ℛ𝑠
𝒶 = 

𝐸[𝑅𝑡+1|𝒮𝑡 = 𝑠, 𝐴𝑡 = 𝑎]. A[24] large positive reward value can be set for any 𝑠 ∈

𝒮, to designate s as 𝐺 or goal state. 

• 𝛾 is a discount factor where 𝛾 ∈ [0,1]. This enables us to model the weight 

assigned to the future reward at each time step. 

The belief 𝐵𝑒𝑙 about which states are occupied (or unoccupied), changes as state-to-state 

transitions are made within the MDP via available actions 𝒜. 𝒜 needs to be defined in 

detail here. Simply put it is a set of actions for all possible states that add up to 25. 

 𝒜 = {a𝑢𝑛𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 , aX
1
, aX

2
, aX

3
, aX

4
, aX

5
, aX

1X2 , aX
1X3,…, aX

1X2X3X4X5}       (14) 

Here the superscript for each action a{state} represents the state to which the corresponding 

action will generate a transition. 

5.2.1.2. Node Adjacency Matrix and MDP Policy Generation 

For an MDP to be able to reach a solution (to generate a policy), a transition probability 

function 𝒫 must assign outgoing probabilities to each state. This function essentially 

represents the world dynamics, telling the model how likely a transition is possible 

between any two states within the MDP model. Each of the states in the MDP model, is 

assigned a set of outgoing probabilities by 𝒫 depending upon the world dynamics. In the 

case of indoor human occupancy detection, these probabilities are assigned using the node 
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adjacency matrix (ADJ) available to us. The sensor node adjacency matrix must also 

include the adjacency information for each node to the entrances of the observed space. 

The following expression is used to assign the probabilities to the state transition matrix.   

𝒫𝑠𝑠′
𝒶 =

{
 

 
0.8 × Pr

𝑠𝑠′
× 𝑇𝑎 if (ADJ(s, s′) = 1)

0.2 × Pr
𝑠𝑠′
× 𝑇𝑎 if (ADJ(s, s′) = 0)

1.0 × Pr
𝑠𝑠′
× 𝑇𝑎 if (ADJ(s, s′) = 1) && (s′ = 𝑢𝑛𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑)

     (15) 

It must be mentioned here that the state transition matrix 𝒫𝑠𝑠′
𝒶  mentioned above 

represents daytime transition probabilities. For nighttime transition probabilities, the last 

rule is modified to 0.5 × Pr
𝑠𝑠′
× 𝑇𝑎     if (ADJ(s, s′) = 1) && (s′ = 𝑢𝑛𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑) as 

occupancy state is less likely to transition to the unoccupied state during the nighttime 

hours. This will help reduce false negative detections caused by IR shielding. Here adj 

represents the SLEEPIR sensor node adjacency matrix. 𝑇𝑎is the action probability dictated 

by the transition model. The transition model determines the probability for the outcome 

for action a. It is assumed that 𝑇𝑎 = 0.7 when action a is taken and 𝑇𝑎=0.3 when an action 

a’ is taken where a ≠ a’. Further explanation about the transition model is provided in 

[24]. Pr
𝑠𝑠′

 is the probability of transitioning from state s to state s’, evaluated by FMA 

detailed in section titled “FMA of Markov Chains” in this chapter. It can be observed in 

equation 15 that the transition probabilities are higher where inter-sensor proximity is 

higher. Values to ℛ, which represents a specific reward value associated with each state 

in the MDP, also need to be assigned. A higher reward value makes it highly probable for 

a policy to generate a Markov Chain that contains the corresponding state. A lower or a 

negative reward value makes it highly improbable for a policy to generate a Markov Chain 



 

91 

 

that contains the corresponding state. It is thus ensured to set a high reward value for state 

that is a goal state 𝐺. For remaining states in the MDP, a value near 0 is set to indicate that 

there exists no preference vis-à-vis states other than the goal state. A standard Policy 

Iteration based dynamic programming solution [24] then uses 𝒫 and ℛ, to generate a 

policy π. 25 policies are generated by setting each state as a goal state 𝐺, one by one and 

then generating a corresponding policy for that state. So, the set of policies forwarded to 

BF will be as follows.  

Π = {πunoccupied , πX
1
, πX

2
, πX

3
, πX

4
, πX

5
, … , πX

1X2X3X4X5}  (16) 

This set of policies Π, is then forwarded to the BF algorithm. 

5.2.1.3. MDP Policy Execution 

In this phase, at the start of execution, a starting state is provided which is the unoccupied 

state, signifying that all observed area is unoccupied. A goal state G is also provided which 

corresponds to the present occupancy scenario as observed by the SLEEPIR sensors. For 

Figure 26. A sample policy 𝝅𝑿
𝟒𝑿𝟓evaluated by Policy Iteration Algorithm. A corresponding Markov 

Chain 𝑴𝑪(𝝅𝑿
𝟒𝑿𝟓) is generated when the policy is executed. World dynamics essentially dictate that 

certain state transitions are necessary before state 𝑿𝟒𝑿𝟓can be reached by the occupant when 

starting from the unoccupied state. Reprinted with permission from [1]. 
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example, if the occupancy is detected at the nodes 𝑋4 and 𝑋5 and no occupancy is detected 

at the remaining nodes, the chosen goal state is 𝐺 = {𝑋6𝑋7}. A Markov Chain 𝑀𝐶𝜋𝐺  is 

then created as per a standard non-deterministic process [24] and uses pre-computed 

policy 𝜋𝐺 computed during the last step. More specifically, the process executes the action 

choice by having the transition from the state s depending on the actions stipulated in the 

policy at 𝑠, i.e., ∑ 𝑃𝑟[𝜋𝐺(𝑠)]𝒫𝑠𝑠′
𝒶

a∈𝒜 . Figure 26 shows how a sample policy let’s say 

𝜋𝑋
4𝑋5is evaluated. What is important is that how far into the MCπG, the goal state 

𝑋4𝑋5 occurs. If the 𝐺 occurs too far into the 𝑀𝐶𝜋𝐺  than it will be unrealistic to assign a 

high credibility to the observation. In case 𝐺 occurs too early into an 𝑀𝐶𝜋𝐺  then again it 

would not make sense to assign high credibility to the observation. To be able to determine 

a sensible threshold of where the 𝐺 should occur in the 𝑀𝐶𝜋𝐺 , an MDP based analysis 

called FMA of Markov Chains, must be done. The details of this analysis will be discussed 

in the next sub-section. It must be mentioned here that the position of G in the 𝑀𝐶𝜋𝐺 is 

evaluated to be able to assign probabilities to each observation via a sensor model, 

depending upon how much the observation conforms to the real-world temporal and 

spatial constraints. For the sake of clarity, it must be mentioned that a sequence of non-

deterministic actions {aX
5
, aX

1X5, aX
1X5 , aX

4X5 , aX
4X5 } was suggested by the policy 

𝜋𝑋
4𝑋5that resulted in the Markov Chain {X5, X1, X1X5, X4, , X4X5}. 

5.2.1.4. FMA of Markov Chains 

For a discrete absorbing Markov chain, with 1 absorbing goal state and 𝑛 − 1 transient 

states, there exists an associated summary of expected temporal behavior that can be 
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characterized via single (𝑛 − 1) × (𝑛 − 1) matrix called the fundamental matrix [117]. 

Let us denote the fundamental matrix for 𝑀𝐶𝜋𝐺by 𝑁𝜋𝐺. The entry 𝑛𝑖𝑗
𝜋𝐺 of this matrix gives 

the expected number of times the occupancy is in transient state 𝑠𝑗 given that it started in 

transient state 𝑠𝑖. Assuming the initial state of the occupancy is at 𝑠𝑖, the following two 

pieces of information as per [117] need to be computed: 

a. Inter-state transition time: This gives us the expected number of time steps to 

reach the goal state 𝐺. The time to reach goal is evaluated as: τ𝐺 = ∑ 𝑛𝑖𝑗
𝜋𝐺n−1

j=1  

b. Inter-state transition probability: This gives the probability that the chain is 

absorbed in state 𝐺 as 𝑃𝑟(𝐺) = ∑ 𝑛𝑖𝑗
𝜋𝐺n−1

j=1 𝑟𝑗𝐺where 𝑟𝑗𝐺 describes the probability 

of transiting from transient state 𝑠𝑗 to absorbing state 𝐺, a submatrix of elements 

from the transition matrix of 𝑀𝐶𝜋𝐺 . 

The Inter-state transition time parameter essentially serves as the gatekeeper for 

any observation to be able to update the BF belief, as noisy observations often suggest 

unrealistic transition times for an occupant to travel from one occupancy state to the other. 

Similarly, Inter-state transition probability provides a probability of transitioning between 

two occupancy states which are crucial to the sensor model of the BF. 

5.2.2. Bayes Filter 

The occupancy state 𝑥 needs to be estimated for the overall monitored indoor space 

based on the observations received from the individual SLEEPIR sensor nodes. The 

estimation problem is treated via a BF. A combined occupancy snapshot from all 
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individual SLEEPIR sensors in the network can be referred to as 𝑧𝑡 for the observation at 

time 𝑡, then a suitable update equation as per the BF definition [118] will be 

                  𝑝(𝑥|𝑧𝑡 , π
G) ∝ p(zt|𝑥, π

G)p(𝑥|zt−1, π
G)                (17) 

In the above expression, the dependence on policy π is explicit. This means that the 

estimate of the occupancy state is assumed to be dependent upon the latest observation 

𝑧𝑡 and the policy 𝜋𝐺 where state 𝐺 is the occupancy that the observation 𝑧𝑡 is pointing 

to. For example, if only two sensors 𝑋4 and 𝑋4are indicating occupancy at time t, state 𝐺 

is set to “𝑋4𝑋5”. Thus, the above recursive expression gives the complete form of the 

filter. However, the following essential elements need to be explained in detail i.e., 

Observation Formulation, Concept of Time and Sensor Model. 

5.2.2.1. Observation Formulation 

A collective observation 𝑧𝑡  generated by a network of SLEEPIR sensor nodes at time t is 

denoted as follows: 

𝑧𝑡 = {𝑧𝑡
X1, 𝑧𝑡

X2, 𝑧𝑡
X3, 𝑧𝑡

X4, 𝑧𝑡
X5}, 𝑤ℎ𝑒𝑟𝑒 𝑧𝑡

Xi ∈  {0,1}   (18) 

For example, in case there is no human detection at the node-level at time t=1 then 𝑧1 =

{0,0,0,0,0}. Note that {0,0,0,0,0} is special state referred to as “unoccupied state” as it 

represents unoccupancy while all other states represent occupancy. The unoccupied state 

is shown in figure 26. 

5.2.2.2. Concept of Time 

Since the individual sensors produce at least one observation about human presence every 

30 seconds, the filter can receive 𝑧𝑡 every 30 seconds and is able to process the 
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observations without any lapses the observations. In case there is a lapse in the 

observations due to a malfunction, the sensor model can address such a scenario. It is 

essential to state here that we set G = 𝑧𝑡 whenever each observation arrives. This also 

means that a policy 𝜋𝐺, time to absorption 𝜏𝐺 and 𝑃𝑟(𝐺) will be used for filtering the 

observation. 

5.2.2.3. Sensor Model 

The sensor model, 𝑝(𝑥|𝑧𝑡, 𝜋
𝐺), can now be written in terms of two outcomes of FMA i.e., 

time to absorption and absorption probabilities.  

𝑝(𝑥|𝑧𝑡 , 𝜋
𝐺) = {

𝑃𝑟(𝐺) if ∆𝑡 ≤  𝜀𝜏𝐺

0 if ∆𝑡 >  𝜀𝜏𝐺

0 if ∆𝑡 ≤  𝜀𝜏𝐺  𝑎𝑛𝑑  𝑧𝑡 = 𝑧𝑡
𝜑

  (19) 

The sensor model simply makes sure that 0 occupancy probability is assigned to the 

observation if the observation state cannot be reached in the time𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 is the 

duration between two consecutive observations. Scalar 𝜀 is the safety margin that accounts 

for any underestimation when it comes to the time to absorption calculation by the FMA. 

The sensor model also assigns a 0-occupancy probability in case the observation points to 

the unoccupied state. In all other cases where observation indicates an occupied state, a 

calculated time to absorption a 𝑃𝑟(𝐺) is suitable estimation of likelihood.  

5.3. Discussion 

The occupancy output for equation 17 is a pdf. This pdf represents the probability 

of human occupancy over all possible combinations of locations. Whichever location 

combination has the maximum probability at time t, would be the belief 𝐵𝑒𝑙𝑡 about the 



 

96 

 

state of the occupancy. A time plot that represents the shifting belief 𝐵𝑒𝑙𝑡 about the human 

occupancy over time is shown in figure 27 (top). This plot shows the progression of the 

network-level output of our proposed method as the BF belief switches between 

Unoccupied and the remaining occupied states based on the sensor model and the sensor 

nodes input. The output is for 24 hours of observations collected during the day. It is 

interesting to show here how traditional PIR output corresponds to the SLEEPIR sensor 

system output.  

Figure 27. (Top) A time plot that shows the progression of occupancy state through a typical day. 

The Bayes filter output is compared to the apartment level occupancy ground truth. (Bottom) A 

time plot that shows the contribution of traditional PIR observations from each of the sensor nodes 

towards overall occupancy. We notice that PIR activations are few and far between especially 

between 3 am and 9 am window. Reprinted with permission from [1]. 
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Fig. 27 (bottom) superimposes the traditional PIR output over the same 24-hour 

ground truth period as shown in Fig. 27 (top). Fig. 27 (bottom) shows that traditional PIR 

only contributes a small fraction towards to overall detected occupancy for the same 

period. It can also be seen that during the night hours, PIR activity is limited and mostly 

Figure 28. (Top) Human occupancy is estimated for the locations X1 through X5. Apartment level 

occupancy ground truth is collected via manual entries to a log register. (Bottom) Pink footprint is 

shown for SLEEPIR sensor modules and grey footprint shown for traditional PIR sensor. Reprinted 

with permission from [1]. 
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restricted to bedrooms. False negatives can also be observed during the night hours (see 

Fig. 27 – top), as the ML thresholding algorithm can often not detect the sleeping subject 

covered in a blanket with little skin exposed due to the IR shielding effect.  

It can also be observed that Entrance PIR is triggered at the time when the switch 

between occupied and unoccupied states occurs. This is because there is only a single 

entrance/exit to the apartment and the entrance node registers a PIR observation whenever 

an entry or exit event happens. Most PIR-based systems depend on such entrance and exit 

events, but it is difficult to determine whether the event was an entry or an exit in certain 

scenarios using only traditional PIR sensors. This is because a single PIR sensor can easily 

get confused between exit and entry given the complex human motion behavior e.g., there 

may be multiple subjects involved or simultaneous entry and exit events can happen. 

The results section must be preceded by certain assumptions that the proposed 

method relies on, to provide reliable occupancy, namely (a) Occupants entering the 

apartment will trigger at least one SLEEPIR sensor node. (b) The SLEEPIR sensors have 

a limited FoV and consequently have sparse coverage (c) All human subjects within FoV 

do not use any specialized means to shield the emitted body IR radiation. 

5.4. Results 

5.4.1. Dataset 

The experiment testbed for dataset collection was a 2 bed 2 bath, first-floor 

residential apartment. There were at least 2 occupants who used this apartment as their 

primary residence. The sensor node layout configuration is shown in Fig. 28. The 

experimentation was completely uncontrolled. The optimal sensor node configuration for 
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best coverage was not explored since the sensor node network is expected to be installed 

by a non-expert user who may choose to deploy sensors in a sub-optimal configuration. 

Thus, a single non-optimized deployment configuration was used. Five SLEEPIR sensor 

nodes were deployed in the months of April, May, and June where the average outdoor 

temperatures range between 59F to 91F. Each node collects the observation every 30 

seconds. The SLEEPIR observations were evaluated using the raw SLEEPIR sensor 

voltage values. Certain thresholds were used to remove noisy observations as per the 

literature presented in [10]. Manual logging was used to label the ground truth. Apartment-

level occupancy observations were noted down as logbook entries whenever anyone 

entered or left the apartment. Data for a total of 30 days was collected. The observations 

were down sampled to 1 observation per minute. This totaled up to 43200 observations 

for each sensor, within the dataset. For the ML thresholding algorithm, 80% of 

observations were used for training, 10% for validation, and 10% for testing using 5-Fold 

Cross-Validation. At least 2 university students (both young males) were the primary 

subjects for the dataset. The subjects used the apartment as their residence. 

5.4.2. Accuracy Results 

The proposed method claims to achieve superior accuracy and execution time 

when compared to already proposed state-of-the-art sensor nodes network-based 

occupancy detection methods i.e., EKF and PF [3]. An EKF implementation [114] was 

chosen to be a baseline method for comparison because it is a Gaussian approximation 

method and a special case of BF with linear, quadratic, and Gaussian assumptions. 

Secondly, EKF has been compared to BF frequently in literature [119-121] in terms of 
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algorithmic efficiency.  The work in this chapter aims to establish that while the proposed 

BF method bears similarities to EKF yet is more accurate and efficient compared to 

existing implementations. The impact of the number of sensor nodes on occupancy 

detection accuracy is also evaluated. The goal of this evaluation is to prove the efficacy of 

the proposed method while keeping the cost and infrastructure footprint limited. Firstly, 

the accuracy results are presented that compare the performance of 1-node, 3-node, and 5-

node networks. The results of this comparative experiment are listed in Table 13. The node 

subsets in Table 13 are selected to maximize coverage in the case of a 3,5-node 

combination. For the 1-node case, the entrance node was selected as it maximizes the 

information about the occupancy of the apartment. Table 14 compares the average 

accuracy of the proposed BF to baseline methods. It also compares the average execution 

time for processing a single occupancy estimate by the proposed and the baseline methods. 

The execution time includes the run times for signal preprocessing, feature extraction, 

LSTM inference, sensor model query, and filter update and prediction steps. The proposed 

model error is broken down and assigned to known error sources as illustrated by Fig. 29. 

The error is also broken down into FPs and FNs and Fig. 30 illustrates the average false 

positives and false negatives reported by the proposed and each of the baseline methods.  

Table XIII. Impact of Sensor Nodes Reduction in the Network. Reprinted with permission from [1]. 

 

Method 
1-node Accuracy 

(𝑿𝟓) 
3-node Accuracy 

(𝑿𝟓, 𝑿𝟐, 𝑿𝟑) 
5-node Accuracy 

(𝑨𝒍𝒍 𝒏𝒐𝒅𝒆𝒔) 

EKF 33.27±9.77% 64.97±7.63% 76.52±5.01% 

PF 37.19±6.81% 77.20±4.81% 84.29±4.38% 

BF 40.05±4.06% 88.17±4.59% 92.04±4.40% 
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Table XIV. Accuracy Comparison between Baseline and Proposed Models. Reprinted with 

permission from [1]. 

Method Accuracy (%) Avg Execution time (ms) 

EKF 76.52±5.01% 87±1.15 

PF 84.29±4.38% 698±122.02 

X1|X2|X3|X4|X5 68.36±9.73% 14±0.0 

BF 92.04±4.40% 59±1.35 

5.4.3. Results Discussion 

The presented results in the last subsection underscore some key points. Firstly, 

BF consistently shows superior performance both in terms of accuracy and execution time 

when compared to EKF[114] and PF[3] implementations. It is important to highlight that 

each of these implementations has unique strengths and weaknesses and cannot be 

considered representative of the whole class of EKF or PF implementations. While the PF 

implementation is similar to the proposed BF implementation, it is important to highlight 

some important features of the EKF implementation. The EKF implementation is a real-

time EKF-based networked sensor-based occupancy estimation algorithm. This system 

originally estimated the number of occupants in each room of the monitored building. The 

EKF system was modified to estimate the binary occupancy and use its output to compare 

Figure 29. A pie chart illustrating the contribution of each error source towards the false positives 

and false negatives reported by the proposed method. Reprinted with permission from [1]. 
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to the proposed BF output. This EKF system handles the non-linearity in the occupancy 

detection data by placing certain constraints on the model like placing upper bounds and 

lower bounds on exit/entrance rates, placing upper bounds on occupant flow from one 

room to another, conservation principle on the number of people in the building, etc. 

Table 13 highlights an important aspect of the proposed BF system i.e., scaling 

down to a smaller number of sensor nodes. In case a sensor node needs to be dropped from 

the system, the proposed method considers the observations from such sensor nodes as 

unoccupied. Any node that has an unoccupied status does not determine the present state 

of the system e.g., for the 3-node scenario, the status of nodes 𝑋1, 𝑓𝑜𝑢𝑟𝑡ℎ𝑋4 is set to 

unoccupied permanently. So, these nodes do not contribute towards the states of the 

system by design. 

The higher accuracy of the proposed BF demonstrated in Table 14 is primarily 

because of the sensor model deployed in the proposed method. The sensor model was able 

to integrate the inter-node and entrance proximity information into the Bayesian updates 

rendering the proposed method simple yet effective enough to surpass an inherently 

superior PF-based method. The execution time results for BF are not very different from 

EKF and both methods use effectively similar steps to reach an estimate. Matrix inversion 

remains the most computationally expensive step for EKF while the transition model 

matrix model evaluation is the most time-consuming phase for the proposed BF method. 

It should be mentioned here that the transition model matrix is only evaluated once for 

each node deployment configuration. 
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The row for the method titled “X1|X2|X3|X4|X5” in Table 14 denotes the 

performance results for the system level output where the algorithm is simply a union of 

binary occupancy status from each node. This binary status is generated by the ML 

thresholding algorithm for each sensor node. For this system-level union algorithm, it can 

be observed that each of the baseline estimation algorithms (EKF, PF, BF) is significantly 

more accurate than this simple rule-based method. 

5.4.4. Error Breakdown 

The error sources (ES) illustrated in Fig. 29 were determined by attributing the 

errors to the location and time of certain IR anomalies like IR noise due to cooking, 

warm water in a sink, or IR shielding effect [8] due to blanket or extra layers of clothing 

covering the entire length of the body. The error categories are as follows. 

a. ES A: FP caused due to the IR noise in the environment. Sources include (1) 

Stoves, hot utensils (2) Warm water taps (3) Laptops, chargers, and other 

electronics that can warm up (4) Space heaters (5) Objects that retain body heat 

after human contact.  

b. ES B: FN caused due to low human IR radiation reaching the sensor. This 

happens either due to IR-blocking materials like blankets shielding human 

subjects or due to sensors failing to detect human IR radiation due to limited FoV. 

c. ES C: Errors caused by wrong assumptions in network-level estimation 

algorithms. 
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We can observe in Fig. 29 that error category B dominates the pie chart as the 

experiment subjects spend a significant amount of time sleeping covered in blankets 

during their sleep hours. Errors shown in table 14 are divided into FPs and FNs via 

confusion charts shown in figure 30.  

 

5.5. Conclusion 

A BF-based occupancy detection method is proposed that detects both stationary 

and moving subject occupancy using a network of SLEEPIR sensor nodes. The primary 

claim of this work, i.e., installing a minimal number of SLEEPIR nodes in sub-optimal 

configuration to achieve high accuracy occupancy detection is proven by the results that 

are evaluated over a long-term dataset that spans over 30 days. Results indicate an average 

23.68% occupancy accuracy improvement when compared to the accuracy state delivered 

by individual SLEEPIR nodes. Results also indicate an average 7.74% occupancy 

accuracy improvement when compared to the accuracy state determined by the previously 

proposed PF-based occupancy estimation algorithm. Furthermore, the proposed BF-based 

method is shown to be faster by orders of magnitude when compared to a competing PF-

based occupancy implementation. 

Figure 30. The confusion matrices showing the performance comparison between the EKF, Particle 

Filter, Simple node output union algorithm, and proposed Bayes Filter method. Reprinted with 

permission from [1]. 
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6. CONTEXT-AIDED OCCUPANCY DETECTION AND TRACKING 

The problem of occupancy detection is inherently complex as occupancy estimation 

experiences considerable accuracy deterioration [3, 76] due to constantly evolving 

environmental and occupancy scenarios. Due to the dynamic nature of occupancy 

scenarios, it is virtually impossible to collect a comprehensive training dataset that 

contains patterns encompassing all anticipated occupancy scenarios. Such a dataset, 

although highly unlikely to exist, would also require significant computational power to 

train due to its size. For the same reason, the ML models are typically trained off-site, and 

model updates are pushed to the inference engine which requires over-the-cloud 

connectivity for the occupancy sensors. For such models, a novel input occupancy pattern 

that does not belong to the distribution of the training dataset would cause degradation in 

occupancy detection accuracy. Since occupancy tracking is a higher-order property of 

occupancy detection [6], it is also expected to suffer a loss in terms of tracking accuracy. 

The overall occupancy detection challenge is a well-investigated topic [88]. On the other 

hand, the OODL [2] algorithms are memory constrained and typically have upper bounds 

on the training dataset size. The proposed method uses the bounded size of the training 

dataset size to its advantage. The method limits the classification space for a KNN model 

by determining contextual information, to enhance the occupancy detection accuracy. We 

term contextual information as simply the context for the occupancy. Determining a 

context for an occupancy classification model involves clustering the observation features 

based on Euclidean distance. It was found during the experimentation that each of the 

clusters approximately corresponded to a specific period during a week e.g., weekend 
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night, weekday morning, etc. Thus, the context e.g., weekend night outlines a cluster or a 

subset of the overall training dataset. It was found during the experimentation that an 

occupancy classifier trained over the subset delineated by the context outperforms a 

classifier that has been trained for the overall training dataset. 

Figure 31. illustrates the overview of the proposed method. A brief stepwise flow of the 

method is presented below.  

1. Firstly, hand-crafted features are extracted from the temporal segments of zero-

centered, normalized occupancy sensor observations. These features are then 

stored in a bounded feature database.  

2. Feature clusters are then identified and subsequently mapped to context classes. 

Each context class represents an occupancy scenario.  

Figure 31. In the Context-aided Occupancy Detection and Tracking System shown above, features 

are extracted from sensor node observations. These features are then stored in a short-term DB. The 

DB is assessed for feature clusters using the Davies Bouldin Index (DBI). Clusters link to context 

classes representing occupancy scenarios. A KNN classifier chooses an ODLL occupancy classifier 

to determine occupancy state. A Bayes filter system evaluates all node outputs, providing room-level 

occupancy estimates every 60 seconds. 
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3. For each new incoming observation, a context class is determined via a KNN-

based classifier called a KNN-based Context Selector. A corresponding 

periodically trained ODLL KNN model [2] is selected based on the identified 

context.  

4. The ODLL KNN model then determines the node-level occupancy.  

5. The occupancy output and location information of nodes is then provided to a BF-

based Occupancy Detection and Tracking algorithm. This algorithm estimates the 

node-level occupancy state of the system and tracks the node-level occupancy over 

time. 

It is useful to mention here that steps 2, 3, and 4 constitute what is called 

Hierarchical Classifier Selection (HCS) framework. The key contributions of this work 

are presented below. 

- A context-aided hierarchical classification approach is proposed that is unique 

within the domain of occupancy detection and tracking. 

- The context limits the classification search space for occupancy detection thus 

improving occupancy classification accuracy and execution time compared to the 

baseline On-Device Lifelong Learning(ODLL) KNN[2], and static-dataset 

LSTM [20] algorithms. 

- A BF-based tracking algorithm is presented that provides robust occupancy 

tracking at node-level resolution.  

The proposed framework avoids the overhead of offline training using large datasets 

as well as eliminates the need for over-the-cloud ML model updates. 
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The details of the underlying networked sensor nodes used in the dataset collection 

and a description of the steps involved in pre-processing sensor inputs have already been 

shared in section 3.2. For the remaining chapter, the major features and working of the 

HCS framework is outlined in section 6.1. Section 6.2 describes the network-level BF 

algorithm that estimates the system-level occupancy based on the HCS framework and 

tracks occupancy. Section 6.3 presents a brief discussion of the method. Section 6.4 

outlines the dataset collection strategy and lists the method performance results. Section 

6.5 presents a conclusion to this chapter. 

6.1. Hierarchical Classifier Selection Framework 

The purpose of the HCS framework is to train and select the most accurate 

occupancy classifier among the set of continuously trained classifiers given a context. 

Here the context is the information that plays the pivotal role in selecting the optimal 

occupancy classifier. Section 6.1.1 details how the context is evaluated.   

   

Figure 32. (Top) The un-clustered features being classified for occupancy (+) and non-occupancy (-). 

(Bottom) The clustered features being classified. The classification is much simpler in case only a 

single cluster is considered at a time. The caveat here is that the clustering needs to be meaningful 

and should have minimal outliers. 
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6.1.1.  Context Generation through Data Clustering 

We observe in figure 31 that the node-level feature database (DB) contains a labeled 

base training dataset with labels. The goal of clustering is to identify subsets of the base 

training dataset that enable more accurate occupancy classification. Figure 32 explains 

why appropriately clustered feature space is easier to classify compared to un-clustered 

feature space. The concept of using clustering to improve classification has been 

investigated thoroughly [122, 123]. This begs the following questions (1) How do feature 

clusters look like for a real SLEEPIR sensor signal? (2) Can the feature data be clustered 

in a meaningful way so that it facilitates classification? Figure 32 answers these questions 

by showing that the evaluated occupancy features, when clustered, can be easily classified 

into occupied and unoccupied classes. Figure 33 shows that the raw observation clusters 

overlap and thus have a significantly higher susceptibility to false positives and negatives.  

To evaluate meaningful clusters i.e., clusters that correspond to an occupancy scenario, 

we utilize a clustering technique based on the K-Means algorithm. K-Means clustering is 

Figure 33 (Left) Clustered features for SLEEPIR sensor module 1, evaluated from the automatically 

labelled raw observations. (Right) Raw observations from the SLEEPIR sensor node for 24-hour 

period.  
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a method that groups data points into k clusters, with each cluster being represented by a 

centroid. The algorithm begins by randomly selecting k data points as initial cluster 

centers. It then assigns each data point to the nearest cluster center based on their similarity 

measured using a distance metric such as the Euclidean distance. The average of the data 

points within each cluster is calculated to update the centroid, and this process is repeated 

iteratively until the centroids stabilize. 

To determine the appropriate number of clusters k, the DBI [124]was employed. The 

DBI quantifies the ratio between the scatter within clusters and the separation between 

clusters. By calculating the DBI for varying numbers of clusters, the number of clusters k 

that yield the lowest value can be identified, indicating a reasonable and meaningful 

clustering solution. It was proven during the experimentation that DBI enhances the 

probability of clusters corresponding to an occupancy scenario. It must be highlighted here 

that one occupancy scenario can cause multiple feature clusters.   

6.1.2. Sub-classifier Architecture and Training 

The node-level or sub-classifier forms the second layer of the HCS framework as shown 

in Figure 31. These classifiers are ODLL classifiers having training datasets that evolve 

as the occupancy scenarios consistently change in almost every real indoor setting. The 

training dataset for each of these classifiers is an assigned cluster from the context 

generation phase detailed in section 6.1.1. For example, while the subject sleeps the 

SLEEPIR observations are frequently clustered together for the collected dataset. Such 

clusters are shown in figure 34. Thus, these clustered observations can serve as the training 

dataset for a dedicated ODLL KNN classifier in this sub-classifier layer of the HCS 
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framework. Similarly, the subject working on a laptop produces feature clusters that are 

distinct from the “sleep scenario cluster”.  The “sleep scenario cluster” and “laptop work 

scenario” clusters may be close in terms of Euclidean or Cosine distance which may cause 

misclassifications. When both of these scenarios are evaluated for occupancy by two 

separate classifiers each trained on its respective cluster, the results show marked 

improvement. The architecture for these sub-classifiers is inspired by the similar KNN 

classifiers deployed in [2].   

In general, KNN is a supervised classification technique that operates on the principles 

of nonlinear distance-based analysis. Unlike other methods, KNN doesn't involve a 

learning process but relies on direct classification. It requires the indexed storage of the 

entire training dataset. 

Given we have a training dataset that falls with a cluster 𝐶1 (𝑥𝐶1 , 𝑦𝐶1), and a new 

observation 𝑥𝑛𝑒𝑤,, we can calculate the distance, denoted as 𝑑𝑚, between 𝑥𝑛𝑒𝑤 and 𝑥𝐶1 

using Equation 1: 

𝑑𝑚 = ‖𝑥𝑛𝑒𝑤 − 𝑥𝐶1‖                               (20) 

Distance calculation typically employs the Euclidean distance measure, which is widely 

used. Once the distance 𝑑𝑚 is obtained, the labels of the k training samples with the 

smallest distances are selected. A majority voting scheme is then applied to determine the 

label of the new observation. It is worth noting that as the number of existing samples in 

the dataset increases the computation time for assigning a new sample to a class also 

increases [96]. 

A limit is set on the total number of observations in the training dataset (as determined 
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by the cluster) to keep the size of the training set bounded. This is achieved by periodically 

removing observations that are farthest from their respective cluster centroid, determined 

by the Euclidean distance. To determine the optimal number of neighbors (k), a critical 

parameter for KNN inference, the Elbow search method [97] is used. This method 

involves periodically calculating the Within-Cluster-Sum of Squared Errors (WSS) for 

different values of k neighbors and evaluating the WSS. We select the value of k at which 

the WSS starts to diminish for the first time. In the plot of WSS versus k, this is visually 

recognizable as an elbow. This search is performed periodically rather than for every 

inference.     

Depending on the context, a sub-classifier is chosen which establishes the node-level 

occupancy based on the new observation 𝑥𝑛𝑒𝑤 collected at the last timestamp. The 

occupancy output of the chosen sub-classifier then reaches a network-level BF occupancy 

detection and tracking algorithm which has already been described in detail in section 5.2. 

6.1.3. Context Selector 

Among the sub-classifier layer of ODLL KNN models, a suitable model needs to be 

selected to perform classification whenever a context is evaluated. This is achieved via a 

KNN-based Context Classifier. We must reiterate here the evaluated context in section 

6.1.1. represents cluster(s) which are based on occupancy observation similarity. We 

employ another KNN classifier to establish the context class for any new incoming 

observation from the SLEEPIR sensor node. This step constitutes the top layer of the 

proposed HCS framework as shown in figure 31. The architecture for this classifier is 

similar to the architecture described in section 3.2.2 with the exception that the data points 
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in this KNN classifier belong to the base training dataset instead of the limited training 

dataset determined by the context (clusters).  Thus, the context determines a sub-dataset 

based upon which a trained ODLL KNN sub-classifier performs occupancy classification 

for the new observation. 

6.2. Bayes Filter-Based Occupancy Detection and Tracking 

The BF occupancy detection and tracking algorithm determines the network-wide 

occupancy while tracking the occupancy state of the observed area i.e., the occupancy 

Figure 34. When feature observations (in grey) from a 30-minute window are plotted. Based on the 

distance between the feature observations (in grey) and the clusters present in vicinity (in red), 

various groups of clusters are formed (in green, orange, blue, black). The pre-trained sub-classifier 

for the selected cluster groups is then employed to make occupancy inference. 
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Figure 35. BF output pdf that represents the occupancy belief of the BF based occupancy tracking 

algorithm that evolves over time. X-axis represents all possible occupancy states while Y-axis 

represents the probability of occupancy for each state at a time instant. 
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status for each sensor node in the system. After binarizing the node-level observations 

using the proposed ML architecture in section 6.1, these observations are utilized to update 

a BF, which generates an estimate of occupancy at the network level. This BF method 

proposed in section 5 thus provides a real-time posterior probability density function (pdf) 

of the state (occupancy belief) based on the available information. The BF method is 

considered 'optimal' because it seeks the posterior distribution that integrates and 

incorporates all the available information expressed as probabilities [116]. The BF-based 

algorithm for detecting occupancy at the network level employs a dual-stage algorithm. In 

the initial stage, the occupancy status of the area under surveillance is modeled as an MDP. 

The MDP is a representation of real-world dynamics. The MDP proposes an optimal 

policy - a sequence of state transitions that are needed before reaching a goal state. The 

goal state is the occupancy state detected by the networked SLEEPIR sensor nodes for 

Figure 36. History of Occupancy states corresponding to BF posterior pdfs shown in figure 35. 
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example {𝑋2, 𝑋3} which indicates that occupancy was detected at nodes 𝑋2 and 𝑋3. The 

MDP also needs a starting state which is the previous occupancy state detected by the BF-

based method. For example, if the starting state was {Unoccupied} and the goal state was 

detected to be {𝑋2, 𝑋3}, then MDP would propose an optimal sequence of states π that 

need to be navigated to reach the goal state while beginning at the start state. This 

suggested sequence π would also require an expected amount of time to be navigated. The 

work described in section 5 evaluates both the sequence of occupancy states and expected 

traversal time given a starting and a goal occupancy state. 

In the second stage, the BF continually receives updates about occupancy status 

from individual SLEEPIR nodes, e.g., {𝑋2, 𝑋3}. Based upon the suggested sequence of 

occupancy states π, the BF continually adjusts its belief based on the degree of agreement 

between the observed occupancy state fed via SLEEPIR node observations and the 

sequence π. If an incoming occupancy observation aligns well with π suggested by the 

MDP, it is assigned a higher likelihood compared to an observation that doesn't align well. 

The sensor model for the BF correlates the incoming observations to the likelihood values 

of the overall space being observed as occupied (or unoccupied). 

The posterior probability density function (pdf) that represents the present 

probability for all possible occupancy states is provided in Figure 35. Figure 36 shows 

how the BF-based occupancy tracking algorithm's occupancy belief evolves. Figure 35 

also shows the history of tracked beliefs about the occupancy state. The system output 

shown in the figure represents the real-time output of the proposed context-aided 

occupancy and tracking system. 
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6.3. Discussion 

It must be highlighted that no prior assumptions are made about the clusters that are 

essentially the context classes as evaluated in section 6.1.1., instead, a data-driven 

approach i.e., K-Means clustering, is solely used to establish similar occupancy patterns. 

The dataset gathered for this research indicates that the context classes determined by the 

K-Means clustering algorithm loosely coincided with specified periods of a typical week 

e.g., weekday mornings/evenings constituted a single context class for which the 

occupant activity pattern was found to be similar. On the contrary, weekend nights and 

weekday nights constituted two distinct context classes as the occupant activities varied 

drastically between these two time periods.  

Given the above discussion, it can be concluded that the clustering technique mentioned 

in section 6.1 may not necessarily produce clusters that correspond to a specific period 

within the week. Instead, it was found that although each cluster predominantly contained 

observations from a typical period in a week such as weekday mornings, similar 

observations from other time periods also permeated into the cluster under discussion. 

This can be tolerated by the node-level ODLL KNN classifiers as this does not reduce the 

classification accuracy in any way. For example, there may be periods of unoccupancy 

during weekday morning and weekend night or there may exist similar occupancy patterns 

during weekday morning and weekday evening due to similar activities carried out by the 

subject(s). Thus, similar-looking occupancy patterns within two different time frames 

within a week can be part of any cluster depending upon their distance to another cluster 

within the feature space.   
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 One of the most critical clusters found in the collected dataset is the weekday night 

cluster. This cluster is unique in the sense that the subject(s) are mostly 

stationary(sleeping) and during the months with frequent cold nights, most parts of the 

subject bodies are covered with a blanket or fabric. This inhibits the emitted body IR 

radiation to reach the sensor and thus unique patterns are formed that are in proximity to 

clusters representing inoccupancy within the feature space. It would have been a 

particularly difficult task to perform occupancy classification for the non-clustered data 

for the cold nights, yet due to the clustering algorithm, both cold night features and 

inoccupancy features lie within the same cluster. The ODLL KNN classifier for the 

clustered data encounters significantly lower false negatives as shown in the results 

section.  

6.4. Dataset and Results 

The dataset described in Chapter 3 is used for the accurate evaluation of the 

proposed context-aided detection and tracking method. As a recap, 4 SLEEPIR sensor 

nodes were deployed at a residential apartment as shown in Figure 7. The apartment unit 

had 2 bedrooms and 2 bathrooms. The apartment covered area was 10m x 14m. Each 

node was installed at a height of 2.8 meters. Each node collects one observation every 30 

seconds. The duration of data collection was 30 days. Webcams were used to collect 

ground truth data. 

6.4.1. Accuracy Evaluation 

As shown in table 15, the current state-of-the-art methods, namely EKF and PF 

[3], are outperformed by the proposed method for occupancy detection in sensor node 
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networks. An EKF implementation [114] was selected as a baseline for comparison due 

to its ability to approximate a Gaussian distribution and its resemblance to BF, which 

incorporates linear, quadratic, and Gaussian assumptions. In previous literature, EKF has 

frequently been compared to BF in terms of algorithmic efficiency [119-121]. 

Table XV. Detection Accuracy Comparison between Proposed Context-Aided KNN Model and 

Baseline Models  

Date 
EKF + Static 

LSTM 

Accuracy 

PF + Static 

LSTM 

Accuracy 

BF + Static 

LSTM 

Accuracy 

BF + KNN 

Accuracy 

Proposed Context 

aided KNN +BF 

Accuracy 

15 April 77.2% 81.9% 83.1% 89.3% 95.9% 

16 April 82.1% 89.2% 91.7% 94.0% 95.3% 

17 April 70.5% 77.0% 81.4% 90.7% 97.6% 

18 April 61.2% 88.5% 82.5% 86.8% 91.0% 

19 April 59.0% 88.3% 86.8% 87.1% 95.1% 

20 April 71.6% 82.5% 89.5% 91.2% 97.5% 

21 April 80.2% 85.2% 91.6% 93.9% 97.8% 

 

Table XVI. Tracking Accuracy Comparison between Proposed Context-Aided KNN Model and 

Baseline Models (Percentage time spend in correct states) 

Date 
EKF + Static 

LSTM 
Accuracy 

PF + Static 

LSTM 
Accuracy 

BF + Static 

LSTM 
Accuracy 

BF + KNN 
Accuracy 

Proposed 

Context aided 

KNN+ BF 

Accuracy 

15 April 57.9% 70.5% 77.5% 86.9% 93.2% 

16 April 63.5% 77.9% 87.1% 91.7% 92.4% 

17 April 52.1% 69.4% 75.8% 88.0% 95.4% 

18 April 48.5% 77.7% 78.5% 84.8% 85.1% 

19 April 44.0% 79.7% 81.7% 86.7% 91.0% 

20 April 53.2% 75.2% 84.5% 90.5% 93.9% 

21 April 62.9% 78.2% 88.4% 92.2% 94.0% 
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The objective of this study is to demonstrate that the proposed context-aided BF 

method, despite its similarities with EKF, surpasses existing implementations in both 

accuracy and efficiency. The evaluation primarily focuses on establishing the 

effectiveness of the proposed method in accurately tracking occupancy at the room level. 

Firstly, the accuracy results that compare the occupancy detection performance using the 

networked SLEEPIR nodes, are presented. The results of this comparative experiment are 

listed in Table 15. In Table 16, the tracking performance of the above-mentioned baseline 

algorithms with the proposed context-aided BF tracking algorithm is compared. The 

proposed model error is broken down into FPs and FNs and Fig. 37 illustrates the false 

positives and false negatives reported by the proposed and each of the baseline methods. 

77% of the dataset was used for training while the remaining 23% was used for testing. It 

was ensured that a continuous full week of data is tested.   

 

Figure 37. FPs and FNs for 7-day test data showing the performance for the proposed context 

aided occupancy detection framework. 
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6.4.2. Error Analysis 

- On the 18th of April, it was observed that there was a high false negative (FN) 

rate across all models, with the lowest accuracy being 61.2% for the EKF + 

Static LSTM model and the highest being 91.0% for the Proposed Context aided 

KNN +BF model. This was unusual and could be attributed to the subject 

spending most of the day in bed. This non-typical behavior might have misled 

the models, causing them to incorrectly predict the absence of the subject, hence 

increasing the FN rate. Additionally, the presence of IR shielding was a 

significant factor that contributed to this anomaly in the models' prediction. 

- On the 17th, 20th, and 21st of April, it is noted that there were fewer false 

positives (FP) than usual across all models. This means that the models 

performed better in accurately predicting occupancy. A key factor that helped in 

this improved performance is the capability of the proposed Context aided KNN 

+BF model to adapt well to the infrared (IR) noise caused by the solar IR in the 

living room and Bedroom 2. The model was able to minimize false positives, 

thereby increasing its accuracy, which ranged from 97.6% to 97.8% on these 

dates. 

- The context was evaluated using 30-minute observation windows. A 30-minute 

window is a tunable parameter. It was found experimentally that evaluating 

context over less than 30 minutes resulted in non-consistent context while 

notching up the value to over 30 minutes led to missing certain short-term 

contexts like having lunch or cooking a small meal etc. 
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6.5. Conclusion 

This research presented a context-aided occupancy detection and tracking 

framework for sensor node networks. The paper addressed the inherent complexity of 

occupancy detection due to evolving environmental and occupancy scenarios. It 

emphasized the challenges of collecting comprehensive training datasets encompassing 

all anticipated occupancy patterns and the need for model updates in dynamic scenarios. 

The proposed framework leveraged the bounded size of the training dataset and utilized 

contextual information to enhance occupancy detection accuracy. The method effectively 

limited the classification space through data clustering and the hierarchical classifier 

selection (HCS) framework, improving accuracy and execution time compared to baseline 

algorithms. The BF-based occupancy detection and tracking algorithm provided a robust 

estimation of occupancy at both network and node levels, incorporating the real-time 

posterior probability density function (pdf) of the occupancy state. 

The paper demonstrated the effectiveness of the proposed method through a 

comprehensive evaluation using a dataset collected from a residential apartment. The 

results showcased superior performance compared to state-of-the-art methods in terms of 

occupancy detection accuracy and tracking precision. The lowest accuracy was recorded 

at 61.2% for the EKF + Static LSTM model, while the highest accuracy of 97.8% was 

achieved by the proposed Context aided KNN + BF model. 

The contributions of this research include the novel context-aided hierarchical 

classification approach, the BF-based occupancy detection and tracking algorithm, and 

the elimination of offline training and over-the-cloud model updates. The proposed 
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framework offers potential applications in building automation, energy management, and 

occupancy-based services. 



 

124 

 

7. CONTRIBUTIONS & CONCLUSION 

7.1. Contribution 

The contribution of our research is summarized below. 

The ODLL KNN occupancy detection algorithm contributed to our research by 

• Present a node-level ODLL classifier that continuously learns evolving occupancy 

patterns and reduces on average 15.43% FP and 17.92% FN error generated by 

LSTM-based offline classifier. The primary causes of these errors are 

environmental IR disturbances and IR shielding. 

• Devising a highly efficient algorithm that enables low-power, local periodic 

computation which eliminates the need for over-the-cloud ML model updates. 

• The test distribution and the training distribution are kept the same by training the 

ML model on the same sensor data which is used for testing. 

The Particle and Bayes filter-based network-level occupancy detection algorithms were 

able to improve the building-level occupancy detection accuracy by 

•  exploiting the adjacency and observation correlation between the networked 

nodes to reduce on average 13.70% FP and 16.31% FN error when compared to a 

benchmark Finite State Machine network-level estimation algorithm. 

• Use cooperative, redundant, and complimentary fusion strategies to reduce the 

impact of sensor noise, small sensor range, FoV, and complicated occupancy 

scenarios.  

The context-aided occupancy detection and tracking framework contributed to gaining 

superior occupancy detection and occupancy state tracking. More particularly,  
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• It reduced FP by 48.8% compared to EKF + Static LSTM method. 

• It reduced FN by 26.3% compared to EKF + Static LSTM method. 

• The FP and FN reduction happened due to the context isolating a subset of 

training data which is easier to classify.  

7.2. Future Challenges 

• Although stationary IR noise like space heaters or stoves are not likely to be 

picked up as occupancy by the auto labeling algorithm mentioned in Chapter 3 

but warm objects in motion like window blinds during the day or fan motion 

within a space heater are still challenging as these tend to trigger voltage 

response in the PIR sensor. A PIR-based solution that has multiple PIR sensors 

with PDLC shutters is a recommended future direction. Such a solution should be 

capable of eliminating small IR-emanating objects by directed FoV. 

• Since the ODLL dataset is constantly evolving, low power, low CPU cycle, 

memory constrained micro-controllers require time to collect observations, label 

these and then learn the occupancy model. It is a challenge to find a power-

optimized hardware platform for this application.  

• People counting and differentiating between an adult and a child is not possible 

using the networked SLEEPIR sensors as the output of these sensors is binary. 

Yet provided the network-level tracking data and knowledge about the spatial 

distance between the nodes, an inference can be made about the minimum 

occupancy within an observed environment.  
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7.3. Conclusion  

This research optimizes indoor occupancy detection and tracking using networked sensor 

nodes. These nodes yield superior accuracy compared to standalone sensors, which often 

suffer from coverage gaps and inaccuracies. The presented approach employs network-

level sensor fusion and occupancy estimation techniques to leverage the complementary 

information in time-series data. The work proposes methods for various applications 

including occupant comfort, health, energy, and space utilization, building design, and 

safety. Key elements of the proposed system include diverse sensor technologies, data 

fusion techniques, machine learning algorithms, and estimation strategies. Major 

contributions of this work include an on-device lifelong classifier that learns occupancy 

patterns, a network-level algorithm using inter-node spatial information, and a high-

resolution system that filters unreachable occupancy states.     
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