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Abstract—We have previously developed a synchro-
nized low-energy electronically chopped passive infrared
(SLEEPIR) sensor node that can detect both stationary and
moving occupants. In this article, we present a Bayes filter
(BF)-based network-level algorithm that uses a network of
SLEEPIR sensor nodes deployed at a residential apartment
to estimate the occupancy of the entire apartment. The
method processes the incoming observations from each of
the sensor nodes via a sensor model and transforms these
observations into Bayesian updates. The sensor model uses
a Markov decision process (MDP) formulation to estimate
the temporal bounds on the rate of occupancy flow between
one occupancy state to another. The overall BF output is a

Networked SLEEPIR
sensor node

-~ Bayes Fiter -

==

Preprocessing
& Feature
Extraction

raw obs LSTM
Classifier

[0,1]

Inter-node
Transition Time

“ | PR obs [0,1]

L uoposuon

Sensor Model

MDP Formulation — State Transition Matrix—> FMA ——>
Look up table

P [xt X2 [ ]xt . x®

xt os]os

0.025

x2 |o7]os 0.05

x1.x5( 02 |04 o1

Node adjacency
matrix

Sensor Model (Detailed View)

probability density function (pdf) that represents the occupancy state of the entire observed space. The sensor node
adjacency matrix and observation frequency are the key parameters that contribute to the sensor model design. The
sensor model uses estimated transition time and probability between occupancy states to filter out observations that do
not conform to the constraints set forth by the parameters. Occupancy is established through a thresholding function
applied to the output pdf of the BF. A dataset was collected at a residential unit over a period of one month using the
SLEEPIR sensor system. Results indicate an average 23.68% occupancy accuracy improvement when compared to the
accuracy state delivered by individual SLEEPIR nodes. Results also indicate a 7.74% occupancy accuracy improvement
when compared to the accuracy state determined by an already proposed particle filter (PF)-based occupancy estimation

algorithm.

Index Terms— Bayes filters (BFs), occupancy detection, passive infrared (PIR) sensors, recurrent neural networks

(RNNs), smart devices.

I. INTRODUCTION
O ADDRESS the issue that standard passive infrared
(PIR) sensors can only detect nonstationary occupants,
our team previously developed a networked synchronized
low-energy electronically chopped PIR (SLEEPIR) sensor
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node [1], [2] that can detect both stationary and moving
occupants by adding an electronic polymer-dispersed liquid
crystal (PDLC) infrared (IR) shutter to a standard PIR sensor
[3], [4]. In this article, we propose the Bayes filter (BF)-based
algorithm that uses a network of SLEEPIR sensor nodes to
improve the otherwise less-than-perfect occupancy detection
capability of individual nodes [3].

The BF-based algorithm is more robust to the environmental
IR disturbances when compared to our previously reported
particle filter (PF)-based algorithm [5]. PF-based occupancy
detection approach requires a considerable amount of compu-
tational capability, which does not allow such an approach
to be implemented over a resource-constrained Internet of
Things (IoT) device. Moreover, unlike the PF-based algorithm,
the proposed BF algorithm also avoids using the historical
sensor data for filtering out node-level noisy observations. The
proposed method also allows the use of a minimal number of
adjacent sensor nodes and exploits the adjacency information
of these nodes to detect the occupancy of an entire covered
space of interest.

The proposed BF-based algorithm determines the
network-wide occupancy while tracking the occupancy
state of the observed area, i.e., the occupancy status for each
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sensor node in the system. After binarizing the node-level
observations using a proposed long short-term memory
(LSTM) network model in Section III-B, these observations
are utilized to update a BF, which generates an estimate of
occupancy at the network level.

The BF sensor model utilizes a Markov decision process
(MDP) formulation [6] to model the indoor occupancy states
and occupancy transition probabilities between states. We
perform fundamental Markov analysis (FMA) [7] on an under-
lying MDP, to evaluate transition probability and expected
time to travel between two occupancy states. These two
parameters play a crucial role in filtering out environmental
IR disturbances.

The proposed BF-based occupancy detection algorithm has
the following key advantages: 1) superior detection accu-
racy compared to the baseline algorithms like PF [5] and
extended Kalman filter (EKF) [8] based method; 2) superior
computational efficiency when compared to the state-of-the-
art PF-based method [5]; and 3) independence from historical
sensor data to filter out noisy sensor node observations.

A literature review is presented in Section II. Section III
provides an overview of the SLEEPIR sensor system and
explains the input processing phase of the method. Section IV
introduces the proposed method in detail. Section V presents
a brief discussion about the method’s design, its inherent
strengths, and weaknesses. Section VI outlines the dataset
collection strategy and highlights the method’s performance
results. Section VII provides a conclusion to the proposed
work.

Il. LITERATURE REVIEW

We propose a BF-based network-level algorithm that
enhances detection accuracy by utilizing an occupancy picture,
comprised of information flowing from multiple networked
nodes. Thus, although the proposed method is agnostic to
the sensor modality, it is essential to mention that PIR-
based sensors are the most widely used sensor modality for
occupancy detection [9]. There have been attempts to use light,
temperature, sound, CO»,, reed switches, total volatile organic
compounds (TVOCs), pressure, humidity, power usage, and
Wi-Fi sensors [10] for occupancy detection but wide adoption
of these sensors has been stemmed due to problems like slow
response, high noise-to-signal ratio, and in some cases, low-
correlation between occupancy and sensor observation due
to changes in indoor environment. Low-cost camera-based
systems have also been suggested [11], yet the lack of privacy
and high computational cost to deploy such sensors have
inhibited their widespread use.

Although widely used in occupancy detection [1], [3],
[12], [13], tracking [14], [15], [16], and counting [17], [18],
a major drawback of PIR sensors is that these cannot detect
stationary occupants. Individual SLEEPIR [1], [2], [4] nodes
address this issue, but at the same time, its accuracy suffers
from environmental IR disturbances. Our proposed method
improves this degraded accuracy by exploiting the adjacency
information for networked SLEEPIR nodes.

Among all the network-level occupancy detection frame-
works found in the literature, two major gaps emerged. First,
in general, there was a near-linear relationship between the

number of sensors and the monitored area in order to maintain
the accuracy of the solution [19]. Second, virtually all of
the network-level occupancy detection frameworks required
historical sensor data (may it be data correlation or training
datasets) to be able to filter out the noisy node-level obser-
vations. The latter gap is one of the major roadblocks in the
way of the widespread adoption of network-level occupancy
detection methods.

The closest work to our proposed method in the literature
is a BF-based occupancy detection framework [20]. The entire
dataset in this work spans over a total of 112 days, out
of which 28 days are used to establish prior probabilities.
Data were collected at three cities with a different sensor
node deployment configuration for each city. Cellphone GPS
locations and Bluetooth signal from car key Fob were used
to provide occupancy ground truth. This work evaluates the
correlation between individual PIR sensor node outputs, the
union of PIR node outputs, BF output, and the ground truth.
This work concludes that the individual PIR sensor output and
the union of PIR sensor outputs have a very low correlation
with the ground truth. The result shows a 25% improvement
in the correlation measure between BF output and ground
truth compared to the correlation between individual node
outputs and ground truth. Dependence on historical data for
determining prior occupancy probabilities has disadvantages
like upfront data-collection costs and the possibility of noise
in historical data.

Another similar work is presented in [15] that uses the adja-
cency relationships between PIR sensor nodes where the exact
positions of the sensors are not known and thus irrelevant.
The system’s state in this work is modeled via a homogenous
hidden Markov model (HMM). Multiple hypothesis tracking
(MHT) is used to track possible trajectories of occupants
using PIR sensor observations. HMMs are better suited for
tracking applications as these rely on a time series of sensor
observations to produce the most likely sequence of occupancy
states that produced sensor observations. Our proposed work
follows a different approach compared to an HMM as it
only requires the most recent sensor observation to make a
hypothesis about the present occupancy state. Moreover, this
work requires the placement of many sensors with minimal
gaps in the coverage area while leaving little unobserved
space. Our proposed method uses a suboptimal configuration
of sensor nodes that may leave significant gaps in coverage,
and thus, our proposed method deals with a higher level of
uncertainty.

We found several interesting sensor model formulations for
BFs performing occupancy detection in the literature. For
example, in [20], a feed-forward neural network (FFNN) to
compute the likelihood function that fuses the occupancy
estimate from multiple light-emitting diode (LED) sensor
nodes, each of which senses the variance of diffusion reflection
caused by the presence of occupants to infer the occupancy
level. The redesign of the LED driver achieves the sens-
ing mechanism to leverage LED’s photoelectric effect, thus
transforming a light emitter into a light sensor [21]. The
historical data of six months were required to train the FFNN
of 16 sensor nodes that constitute the sensor model. This work
differs from [20], as we rely on the sensor node adjacency
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information rather than the historical data required to train an
FFNN. Another work [22] used a nonhomogeneous Markov
model [23] to determine the occupancy state (zero, low,
medium, and high) within an office space based on carbon
dioxide concentrations. This work uses a single CO;, sensor
node. In contrast, this work considers multiple sensor nodes
installed at spread-out locations within an observed space
where our occupancy state is a combination of individual
occupancy outputs (0,1) of all sensor nodes present in the
network.

Different from non-Markov models [24], [25], a BF state is
assumed to follow a first-order Markov process property [26],
which states that the future state depends on the present state
only. As occupancy change behavior is also a Markov process,
Markov chains (a mathematical process that transitions from
one state to another within a finite number of possible states)
are commonly used to capture the temporal dependence of
indoor occupancy [27], [28], [29], [30]. We, thus, use Markov
chains to develop a realistic sensor model for our proposed BF.

Although the probability of occupancy for any given
location is time-dependent, which can be ideally modeled
via analysis of a first-order nonhomogeneous Markov chain
(where transition probabilities vary with time) [23], we instead
use first-order homogenous Markov chains to determine a
statistical model for the change of occupancy state as used in
previous works [30], [31]. We do this as we found a marked
shift in the probability of occupancy between nighttime and
daytime hours due to the shift in occupancy behavior between
these hours. We use two separate homogenous Markov models
for nighttime and daytime occupancy detection. This will
significantly reduce the computational complexity while main-
taining high detection accuracy [32].

Given the breadth of systems and techniques proposed to
perform occupancy detection given two critical pieces of infor-
mation, that is: 1) the intrasensor node adjacency relationship
with their proximity to the observed area entrance and 2) the
SLEEPIR sensor-based observations, we can safely conclude
that the proposed algorithm addresses a significant occupancy
detection gap with a minimal number of sensor nodes installed
in suboptimal configuration.

I1l. SYSTEM NOTATION, INPUT, AND
PREPROCESSING ALGORITHM

To be able to keep track of what various notations and
terms mean, Table I summarizes the frequently used notation
throughout this article.

The overall system flowchart is presented in Fig. 1. The raw
SLEEPIR sensor observations are extracted from the SLEEPIR
sensor node using a Bluetooth communication protocol. The
sensor and communication platform details are presented in
Section III-A. We present a brief overall algorithm flow in the
following that summarizes the flowchart shown in Fig. 1.

1) The raw sensor output (which includes SLEEPIR sensor
voltage, PIR sensor binary output, and ambient tempera-
ture) is collected from each sensor node via a Bluetooth
communication protocol.

2) Raw voltage values from SLEEPIR sensor are pre-
processed using an LSTM network-based thresholding

TABLE |
NOTATION DESCRIPTION

Notation Description

U, A probability density function (pdf) that is computed
based on an incoming observation, by the sensor model,
depicting the probability for each occupancy state being
occupied at time ¢ (See section 3)
L¢ A posterior pdf that represents the represents the belief
of the BF about all possible occupancy states being
occupied at time ¢ (See section 3)
The voltage response by the SLEEPIR sensor depends on
the IR radiation power received by the pyroelectric
material in the sensor. Units of this value are volts. (See
section 3.A)
Training dataset where each observation consists of
fixed-horizon non-overlapping windows of length / from
one sensor node data. (See section 3.B)
Occupancy labels for 0bst (See section 3.B)
Occupancy ground truth recorded via camera every
second.
(See section 3.B)
The goal state G is the occupancy state detected by the
networked SLEEPIR sensor nodes. (See section 4)
An optimal sequence of states that need to be navigated
to reach the {state}. (See section 4)

Vout ()

obst

labelr
ground-
truthr

Sand G

n.(state}

Represents an action that is expected to transition from

a(state} . N
present state to the intended {state}. (See section 4.A)

A transition probability function that represents the
world dynamics, telling the MDP model how likely a
transition is possible between occupancy state s and s, if
action a is chosen. (See section 4.A)

P,

SS

A probability of reaching the goal state when starting
from any state in MDP. This probability is assigned to
each state in MDP. (See section 4.A)

Pr(G)

Markov chains in our context represent a mathematical
process where a sequence of MDP occupancy states are
reached non-deterministically when a pre-computed
policy m{st@te} suggests a sequence of actions. (See
section 4. A)

MCn{state}
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Fig. 1. BF-based occupancy detection method flowchart. Networked
sensor nodes generate voltage, ambient temperature, and PIR data.
The voltage is converted to binary occupancy observations via the
LSTM classifier. The node-level occupancy observations then update
a network-level occupancy estimate via BF.

algorithm. This algorithm is detailed in Section III-B.
This thresholding algorithm classifies the raw SLEEPIR
sensor observations and outputs in binary whether
the sensor has detected human occupancy or not.
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Fig. 2. SLEEPIR sensor node (top). lllustration of the sensor output

voltage Vput due to the changing transmitted IR radiation when the
PDLC shutter turns on or off (bottom).

The traditional PIR sensor output is already binary, so it
does not require preprocessing.

3) The binarized observations are converted into a Bayesian
update U; via a sensor model. U; is used to update our
hypothesis L, that points toward the occupancy state we
believe the system to be currently in. This sensor model
merges the output from both the SLEEPIR sensor and
the traditional PIR sensor into a single BF update. This
model is described in detail in Section I'V-A.

4) The BF receives these periodic updates from the sensor
model function and estimates the probability of human
occupancy at each of the locations represented in the
BF state. The world constraints are embedded in the
sensor model and BF design which serves to produce
a robust human occupancy belief. Details of the BF
sensor model, state update, and prediction are presented
in Section I'V-B.

A. Synergistic SLEEPIR Sensor Node

As illustrated in Fig. 2, top, each SLEEPIR sensor node
includes two PDLC shutters covering two analog PIR sensors
(EKMC2691111K, Panasonic Inc.), alongside a traditional
digital PIR sensor (EKMB1391111K, Panasonic Inc., Kadoma,
Japan), a microcontroller unit (MCU) (EFR32BG13, Silicon
Labs, Austin, TX, USA), a PDLC driving circuit, an ambient
temperature sensor embedded in MCU, and two AA batteries
connected in serials (3-V dc voltage supply). The PDLC

shutters cover a pyroelectric sensing element, which is made
up of pyroelectric material. It converts the change of heat flux
to current. If the radiation power received by the pyroelectric
material is W(t) = Wpe'®, which is modulated at frequency
w, then the voltage response V. (¢) for the preamplifier stage
is in the following form:

Rppnp' Aw

Vout (1) = T W(@). )

Gr (1 +0?R)* (1 +0?ed)*

Here, p’ is the perpendicular component of the pyroelectric
coefficient p. A is the area of the sensing element. 1 represents
the emissivity of the sensing element; and 77 = H/Grt
and tg = RpCpy represent the thermal and electrical con-
stant, respectively. Here, H, GT, Rp,, and Cg, stand for
thermal capacity, thermal conductance, feedback resistance,
and capacitance, respectively. Commercial-of-the-shelf PIR
sensors usually consist of two or four sensing elements placed
in series with opposite polarizations. By covering the sensing
elements with the same polarization, the transmission change
of the PDLC shutter would introduce noticeable voltage sig-
nals from the PIR sensor. When the PDLC shutter, which is in
front of the PIR sensor, changes its transmission periodically,
the received radiation W (¢) changes periodically as well. This
in turn causes the change of the output voltage Vo (). An
example output signal is shown in Fig. 2.

B. LSTM Classifier

As the sensor node generates time-series observations con-
sisting of SLEEPIR raw voltage output V¢ (¢) in (1), as shown
in Fig. 2, bottom, the ambient temperature Tomp(?), and dig-
ital PIR sensor output PIR(¢#), we employ recurrent neural
networks (RNNs) to classify these observations to indicate
whether the incoming observation represents human occu-
pancy or not. RNNs when compared to the typical FFNNs have
been shown to achieve higher accuracy with time-series data
[33], as these can process and encode the sequential temporal
information contained in time-series data. In our implemented
pipeline, first, the incoming time-series data from the sensor
node is zero-centered and normalized. We then divide the input
time series into predetermined-sized observation windows.
Each window is then labeled as either occupied or unoccupied
based on the available ground truth gathered via a surveillance
camera installed at the testbed. Lastly, we train an LSTM
network with the training data. We deploy the trained network
(shown in Fig. 3) so that the network can distinguish between
the observations indicating occupancy versus those indicating
nonoccupancy. We list down the machine learning (ML)-based
thresholding algorithm in Sections III-B.1-III-B.3.

1) Input Formatting: The hand-tuned ML features are used
widely in the literature with a goal to produce easily distin-
guishable values for different data classes [34]. A good feature
remains invariant to the slight changes in the input pattern for a
particular class and tends to produce similar values for patterns
belonging to the same class. We could have chosen to quantize
the input as input quantization has a proven positive impact
on RNN accuracy, provided there is limited information loss
[35] but we noticed insignificant accuracy improvement at the
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Fig. 3. LSTM network architecture for SLEEPIR raw observation binary
classifier.

cost quantization due to the information loss thus we chose
not to follow quantization approach.

2) Sliding Window Input Approach: We initialize the training
dataset obsy where each element is created by sliding a
fixed-horizon window of length I over the 4-D training input
time series consisting of the following elements [Vp1(2),
Vop2(8), Tamp(?), PIR(#)]. We then initialize the labels labelt
where each element corresponds to each window in obsr.
We set an element to “occupied” if a surveillance camera-
based ground-trutht indicates that the human subject was
present for more than 50% of observations in the field of
view (FoV) of the sensor. Otherwise, the element is set to
“unoccupied.” A suitable window length (/) is known to be
a critical parameter that has a pronounced impact on the
over network accuracy [36]. We will highlight this impact on
Section III-B.3.

3) LSTM Network Architecture: We use a highly cited deep
forward RNN model proposed in [37], which contains multiple
layers of recurrent units that are connected “forward” in time.
This model architecture is simple yet powerful enough to
produce reliable results over publicly available datasets which
consist of time-series data. The online LSTM model shown in
Fig. 3 contains a single hidden layer of 16 recurrent neurons.
During the evaluation phase, all RNN models use 3, 6, 9, and
16 neurons depending upon the experimental configuration.
There are also four input neurons to match the number of
input time series from the sensor node, i.e., [Vpp1 (), Vpp2(2),
Tamb(2), PIR(?)]. There are two output neurons to match the
output classes corresponding to “occupied” and “unoccupied”
status.

Emad-ud-din et al. [S] performed a comprehensive search
for suitable RNNs for the occupancy detection application
of SLEEPIR sensors. Our analysis included testing the col-
lected dataset over LSTM, bidirectional LSTM (Bi-LSTM),
continuous-time recurrent neural network (CTRNN), minimal
gated unit (MGU) [38], and gated recurrent unit (GRU)
networks. We varied the observation window length / over a
reasonable range to see if certain networks perform better than

about how quickly can the occupancy state change.

others. We found that for [ = 60 s, the accuracy was highest
across all architectures. This result signified that the most
effective discriminating features exist over a window length
of 60 s. It must be mentioned here that SLEEPIR collects two
consecutive observations over a span of 60 s. The analysis in
[5] concluded that LSTM and Bi-LSTM outperformed other
RNNS in nearly all window length configurations (I = 30, 45,
60, 90 s). We thus choose LSTM as our network of choice
as it is relatively less expensive in terms of resources when
compared to Bi-LSTM.

V. BF DESIGN

After the node-level observations are binarized via the pro-
posed ML architecture, these observations are used to update
a BF which produces a network-level occupancy estimate. BF
provides real-time posterior probability density function (pdf)
of the state (occupancy belief) based on available information.
The BF is thus “optimal” as it seeks the posterior distribution
which integrates and uses all of the available information
expressed by probabilities [26]. The network-level occupancy
detection is a two-tiered algorithm. In the first tier, we shape
the occupancy state of the monitored space as an MDP,
as shown in Fig. 4. The MDP represents the dynamics of the
real world. The transitions (edges) between MDP states are
set based upon the adjacency of the occupancy states in real
indoor observed area. When MDP is presented with a goal
state G, it suggests an optimal policy 7 (an optimal sequence
of states that need to be navigated to reach the goal state
while beginning at the start state S) that leads us to G. Start
state is the previous occupancy state detected estimated by
the proposed BF-based method. As an example, states S or
G can look like {X?, X3} which indicates that occupancy was
detected at nodes X2 and X3 and nowhere else. For example,
if the starting state was {Unoccupied} and the goal state was
detected to be {X2, X3}, then MDP would propose an optimal
sequence of states m that need to be navigated to reach the
goal state while beginning at the start state. The notion of
7 is useful when we need to evaluate the expected time to
transition from the start state S to the goal state G within the
MDP.
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The second tier consists of a BF that periodically receives
the occupancy status from individual SLEEPIR nodes. When
individual SLEEPIR nodes point toward an occupancy state,
we consider that state as a goal state G. Then, an optimal pol-
icy m is generated by the MDP model to reach goal G. Based
upon the suggested sequence of occupancy states w, the BF
continually adjusts its belief based on the degree of agreement
between the observed occupancy state fed via SLEEPIR node
observations and the sequence w. If an incoming occupancy
observation aligns well with = suggested by the MDP, it is
assigned a higher likelihood compared to an observation that
does not align well.

A. MDP and State Transition Matrix Evaluation

Before we describe the elements of BF, we must describe
in detail the steps that help us determine the state transition
matrix, i.e., the MDP formulation, policy generation and
execution, and FMA for Markov chains.

1) MDP Formulation: Each state of the MDP represents a
possible combination of the occupancy status of each indi-
vidual sensor. For example, a state where the entrance and
kitchen nodes indicate occupancy and remaining nodes indi-
cate unoccupancy is represented by X*X7. Similarly, a state
where all nodes are indicating occupancy will be represented
by X'X2X3X*X5. An MDP with mortality is a tuple as per
its standard definition [6]

(S, A, P, R, y)

where

S finite set of states s. Each state represents a
possible occupancy state for the observed area;

A finite set of actions where each of its elements a® is
an action intended for a transition to the state s;

P state transition probability function P, =
P[Si11 =5'|8; =5, Ay = al;

R reward function defined by expected value function
E: R? = E[R+118; =5, A; = a]. A [6] large
positive reward value can be set for any
s € 8, to designate s as G or goal state;

y  discount factor where y € [0, 1]. This enables us to
model the weight assigned to the future reward at
each time step.

Our belief Bel about which states are occupied (or unoc-
cupied), transitions as we move state to state with the MDP
via actions A available to us. A needs to be defined in detail
here. Simply put it is a set of actions for all possible states
that add up to 27
x> x

: 1 4 5 1y2
A= {aunoccupledan caX’, ’aX ’aX aX X ,

’

1y3 1y2y3 yv4yS
aXX aXXXXX}.

Here, the superscript for each action a !} represents the state
to which the corresponding action will generate a transition.
2) Node Adjacency Matrix and MDP Policy Generation:
For an MDP to be able to reach a solution (to generate
a policy), a transition probability function P must assign
outgoing probabilities to each state. This function essentially

represents the world dynamics, telling the model how likely a
transition is possible between any two states within the MDP
model. Each of the state in the MDP model is assigned a
set of outgoing probabilities by P depending upon the world
dynamics. In the case of indoor human occupancy detection,
we assign these probabilities using the node adjacency matrix
(ADJ) available to us. The sensor node adjacency matrix
must also include the adjacency information for each node
to the entrances of the observed space. We use the following
expression to assign the probabilities to the state transition
matrix:

0.8 x PrxT*, if (ADJ (s, s’) =1)
ss’

0.2 x PrxT9, if (ADJ(s,s) =0)
ss’

1.0 x PrxT4, if (ADJ(s,s") =1)

ss’

:Pa/:

SS

2

&& (s’ = unoccupied).

We must mention here that the state transition matrix P¢,
mentioned above represents daytime transition probabilities.
For nighttime transition probabilities, we modify the last
rule to

0.5 x PrxT?, if (ADJ(s,s’) =1) && (s’ = unoccupied).
ss’

We make this modification as the occupancy state is less
likely to transition to an unoccupied state during the nighttime
hours. This will help reduce false negative (FN) detections
caused by IR shielding. Here, adj represents the SLEEPIR
sensor node adjacency matrix. 7% is the action probability
dictated to us by the transition model. The transition model
determines the probability for the outcome for action a.
We assume that 7¢ = 0.7 when action a is taken and
T% = 0.3 when an action a’ is taken where a # a’. Further
explanation about transition model is provided in [6]. is the
probability of transitioning from state s to state s’, evaluated
by FMA detailed in Section 1V-A.4. We can observe in (2)
that the transition probabilities are higher where intersensor
proximity is higher.

We also need to assign values to R, which represents a
specific reward value associated with each state in the MDP.
A higher reward value makes it highly probable for a policy to
generate a Markov chain that contains the corresponding state.
A lower or negative reward value makes it highly improbable
for a policy to generate a Markov chain that contains the
corresponding state. We, thus, ensure to set a high reward
value for the state that we consider to be a goal state G. For
remaining states in the MDP, we associate a value near 0 to
indicate that we have no preference vis-a-vis states other than
the goal state.

We then use a standard policy iteration-based dynamic
programming solution as mentioned in [6] that uses P and R,
to generate a policy 7. We generate 2° policies by setting
each state as our goal state G, one by one, and then generate
a corresponding policy for that state so the set of policies

forwarded to BF will be as follows:
unoccupied x! X2 X3 x4 X3
n={n Ll SAENE SR SEE S S
1y2y3 yvdys
X' XPX°XX ).
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unocc

Xxs
a

Fig. 5. Sample policy 7rX4X5 evaluated by the policy iteration algorithm.

A corresponding Markov chain MC(m ) is generated when the
policy is executed. World dynamics essentially dictate that certain state
transitions are necessary before the state X* X5 can be reached by the
occupant when starting from the unoccupied state.

We then forward this set of policies IT to the BF algorithm.

3) MDP Policy Execution: In this phase, at the start of execu-
tion, we are provided a starting state which is the unoccupied
state, signifying that all observed area is unoccupied. We are
also provided a goal state G which corresponds to the present
occupancy scenario as observed by the SLEEPIR sensors. For
example, if the occupancy is detected at the nodes X* and
X3 and no occupancy is detected at the remaining nodes,
the chosen goal state is G = {X°X7}. We then create a
Markov chain MC7¢ which is created as per a standard
nondeterministic process [6] and uses precomputed policy 7 ¢
computed during the last step. More specifically, the process
executes the action choice by having the transition from the
state s to s’ depending on the actions stipulated in the policy
at s, ie, D cq Pr[nG(s)]fPfs,. We show via Fig. 5, how a
. X4X5 .
sample policy let us say & is evaluated. What matters to
us the most is that how far into the MC™ Y, the goal state
X*X5 occurs. If the G occurs too far into the MC™ G, then it
will be unrealistic to assign high credibility to the observation.
If G occurs too early into an MC”™ G, then again it would
not make sense to assign high credibility to the observation.
To be able to determine a sensible threshold of where the
G should occur in the MC”G, we must do an MDP-based
analysis called FMA of Markov chains. We will go into the
details of this analysis in Section IV-B. It must be mentioned
here that we are evaluating the position of G in the MCT ¢
to be able to assign probabilities to each observation via
a sensor model, depending upon how much the observation
conforms to real-world temporal and spatial constraints. For
the sake of clarity, we must mention that a sequence of non-
deterministic actions {axs,aXIXS,aX]XS,aX4X5,aX4X5} was
suggested by the policy 7X*X* that resulted in the Markov
chain {X3, X!, Xx1x°, x*, x*x°1.

4) FMA of Markov Chains: For a discrete absorbing Markov
chain, with one absorbing goal state and n — 1 transient states,
there exists an associated summary of expected temporal
behavior that can be characterized via a single (n—1) x (n—1)
matrix called the fundamental matrix [7]. Let us denote the
fundamental matrix for MC™° by N™ ¢ The entry n;.;.c of this

matrix gives the expected number of times the occupancy is in
a transient state s; given that it started in a transient state s;.
Assuming the initial state of the occupancy is at s;, we need
to compute the following two pieces of information as per [7].
1) Interstate Transition Time: This gives us the expected
number of time steps to reach the goal state G. We
evaluate the time to reach the goal as: 7¥ = 27;% ij
2) Interstate Transition Probability: This gives the proba-
bility that the chain is absorbed in state G as Pr(G) =
Z']’;} nj?jGrjc;, where r;jc describes the probability of
transiting from a transient state s; to absorbing state G,
a submatrix of elements from the transition matrix of
MC™ .
The interstate transition time parameter essentially serves as
the gatekeeper for any observation to be able to update the BF
belief, as noisy observations often suggest unrealistic transition
times for an occupant to travel from one occupancy state to
the other. Similarly, interstate transition probability provides
a probability of transitioning between two occupancy states
which are crucial to the sensor model of the BF.

B. Bayes Filter

We wish to estimate the occupancy state x for the overall
monitored indoor space based on the observations received
from the individual SLEEPIR sensor nodes. We treat the
estimation problem via a BF. A combined occupancy snapshot
from all individual SLEEPIR sensors in the network can be
referred to as z; for the observation at time ¢, and then,
a suitable update equation as per the BF definition [39] will be

px |z, %) o p(ze | x, 79 p(x | zi—1, 7). 3)

In the above expression, we have been explicit in the depen-
dence on policy w. This means that the estimate of the
occupancy state is assumed to be dependent upon the latest
observation z; and the policy 7¢ where state G is the
occupancy that the observation z; is pointing to. For example,
if only two sensors X* and X* are indicating occupancy at
time ¢, we set state G as “X*X°” Thus, the above recursive
expression gives the complete form of the filter. However,
we would like to explain in detail the following essential
elements, i.e., observation formulation, concept of time, and
sensor model.

1) Observation Formulation: A collective observation gz,
generated by a network of SLEEPIR sensor nodes at time 7 is
denoted as follows:

Zr = {thl , z,Xz, z,X3, z,X“, leS}, where ztxi € {0, 1}.
For example, if there is no human detection at the node level
at time ¢ = 1, then z; = {0, 0, 0, 0, 0}. Note that {0, 0, 0, 0, 0}
is a special state referred to as an “unoccupied state” as
it represents unoccupancy while all other states represent
occupancy. The unoccupied state is shown in Fig. 5.

2) Concept of Time: Since the individual sensors produce at
least one observation about human presence every 30 s, the
filter can receive z; every 30 s and can process the observations
without any lapses the observations. In case there is a lapse in
the observations due to a malfunction, the sensor model can
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address such a scenario. It is essential to state here that we set
G = z; whenever each observation arrives. This also means
that we will be using a policy 7, time to absorption ¢, and
Pr(G) for filtering the observation.

3) Sensor Model: The sensor model, p(x | z;, 7%), can now
be written in terms of two outcomes of FMA, i.e., time-
to-absorption and absorption probabilities

G

Pr(G), if At<ert

<
p (x Izt,nG) =10, if At >et€
<

0, if At <et% and z; = z7.

The sensor model simply makes sure that 0-occupancy prob-
ability is assigned to the observation if the observation state
cannot be reached in the time e7¥. At is the duration between
two consecutive observations. Scalar ¢ is the safety margin
that accounts for any underestimation when it comes to the
time-to-absorption calculation by the FMA. The sensor model
also assigns a 0-occupancy probability in case the observation
points to the unoccupied state. In all other cases where
observation indicates an occupied state, a calculated time to
absorption Pr(G) is a suitable estimation of likelihood. In other
words, the sensor model helps filter out the observations that
do not conform to the expected time suggested by the FMA.

V. DISCUSSION

The occupancy output for (3) is a pdf. This pdf represents
the probability of human occupancy over all possible com-
binations of locations. Whichever location combination has
the maximum probability at time 7, would be our belief Bel,
about the state of the occupancy. A time plot that represents
the shifting belief Bel; about the human occupancy over time
is shown in Fig. 6 (top). This plot shows the progression
of the network-level output of our proposed method as the
BF belief switches between Unoccupied and the remaining
occupied states based on the sensor model and the sensor
nodes input. The output is for 24 h of observations collected
during the day. It is interesting to show here how traditional
PIR output corresponds to the SLEEPIR sensor system output.
Fig. 6 (bottom) superimposes the traditional PIR output over
the same 24-h ground-truth period, as shown in Fig. 6 (top).
Fig. 6 (bottom) shows that the traditional PIR only contributes
a small fraction toward overall detected occupancy for the
same period. We can also see that during the night hours,
PIR activity is limited and mostly restricted to bedrooms. We
can also observe FNs during the night hours (see Fig. 6, top),
as the ML thresholding algorithm can often not detect the
sleeping subject covered in a blanket with little skin exposed
due to the IR shielding effect. It can also be observed that
entrance PIR is triggered at the time when the switch between
occupied and unoccupied states occurs. This is because there is
only a single entrance/exit to the apartment and the entrance
node registers a PIR observation whenever an entry or exit
event happens. Most PIR-based systems depend on such
entrance and exit events, but it is difficult to determine whether
the event was an entry or an exit in certain scenarios using only
traditional PIR sensors. This is because a single PIR sensor can
easily get confused between exit and entry given the complex

Groundtruth — Bayes Filter|

o

% |
2.
>

Q Groundtruth Bed Rm1 PIR —Kitchen PIR

o%v —Lving Rm PIR ---Bed Rm2 PIR ---Ent PIR
)

> .

Fig. 6. Time plot that shows the progression of occupancy state through
a typical day (top). The BF output is compared with the apartment
level occupancy ground truth. Time plot that shows the contribution
of traditional PIR observations from each of the sensor nodes toward
overall occupancy (bottom). We notice that PIR activations are few and
far between especially between 3- and 9-A.M. windows.

human motion behavior, e.g., there may be multiple subjects
involved or simultaneous entry and exit events can happen.

Section VI must be preceded by certain assumptions that
the proposed method relies on, to provide reliable occupancy,
namely: 1) occupants entering the apartment will trigger at
least one SLEEPIR sensor node; 2) the SLEEPIR sensors have
a limited FoV and consequently have sparse coverage; and
3) all human subjects within FoV do not use any specialized
means to shield the emitted body IR radiation.

VI. RESULTS

A. Dataset

The experimental testbed for dataset collection was a two-
bed two-bath, first-floor residential apartment. There were at
least two occupants who used this apartment as their primary
residence. The sensor node layout configuration is shown
in Fig. 7. The experimentation was completely uncontrolled.
We did not explore the optimal sensor node configuration
for best coverage since we expect the sensor node network
to be installed by a nonexpert user who may choose to
deploy sensors in a suboptimal configuration. We, thus, used
a single nonoptimized deployment configuration. We installed
five SLEEPIR sensor nodes in the months of April, May, and
June where the average outdoor temperatures range between
59 and 91 °F. Each node collects the observation every 30 s.
The SLEEPIR observations were evaluated using the raw
SLEEPIR sensor voltage values. Certain thresholds were used
to remove noisy observations as per the literature presented
in [1]. Manual logging was used to label the ground truth.
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Common sources of IR noise in the dataset included kitchen
stove (bottom left), human body heat transferred to the chair (bottom
right), solar IR entering through the living room window (top left), and
bedroom 2 window (top right).

Fig. 8.

e TABLE Il
IMPACT OF REDUCTION OF SENSOR NODES IN THE NETWORK
¥ 1-node 3-node 5-node

[ N Method Accuracy Accuracy Accuracy
X (X°,X2,X3) | (All nodes)
EKF 33.27£9.77% 64.97+7.63% 76.52+5.01%
Fig. 7. Human occupancy is estimated for the locations X' through X PF 37.19+6.81% 77.20+4.81% 84.29+4.38%
(top). Apartment-level occupancy ground truth is collected via manual BF 40.05+4.06% 88.17+4.59% 92.04+4.40%

entries to a log register. The pink footprint is shown for SLEEPIR sensor
modules (bottom). The gray footprint is shown for traditional PIR sensor.

Apartment-level occupancy observations were noted down as
logbook entries whenever anyone entered or left the apartment.
Data for a total of 30 days was collected. We sampled
the observations down to one observation per minute. This
provided us with a total of 43 200 observations for each
sensor, within the dataset. For the ML thresholding algorithm,
we use 80% of observations for training, 10% for validation,
and 10% for testing using fivefold cross-validation. At least
two university students (both young males) were the primary
subjects for the dataset. The subjects used the apartment as
their residence.

Fig. 8 shows sources of IR noise in the dataset environment.
A stove that is cooling down, with certain parts of the stove
frame emitting temperature values similar to that of human
skin (albeit momentarily), the window blinds warming up due
to sunlight, and a chair that remains warm even after use, all
exemplify the highly noisy nature of the environment.

B. Accuracy Results

The proposed method claims to achieve superior accuracy
and execution time when compared to already proposed state-
of-the-art sensor nodes network-based occupancy detection
methods, i.e., EKF and PF [5]. We chose an EKF implemen-
tation [8] to be a baseline method for comparison because it is
a Gaussian approximation method and in fact a special case of

BF with linear, quadratic, and Gaussian assumptions. More-
over, EKF has been compared to BF frequently in [40], [41],
and [42] in terms of algorithmic efficiency. This study aims to
establish that while the proposed BF method bears similarities
to EKF yet is more accurate and efficient compared to existing
implementations. We also evaluate the impact of the number of
sensor nodes on the occupancy detection accuracy. The goal of
this evaluation is to prove the efficacy of the proposed method
while keeping the cost and infrastructure footprint limited. We
thus present the accuracy results that compare the performance
of one-node, three-node, and five-node networks. The results
of this comparative experiment are listed in Table II. The node
subsets in Table II are selected to maximize coverage in the
case of a 3,5-node combination. For the one-node case, the
entrance node was selected as it maximizes the information
about the occupancy of the apartment. Table III shows the
comparison of the average accuracy of the proposed BF to
baseline methods. It also compares the average execution time
for processing a single occupancy estimate by the proposed
and the baseline methods. The execution time includes the
run times for signal preprocessing, feature extraction, LSTM
inference, sensor model query, and filter update and prediction
steps. The proposed model error is broken down and assigned
to known error sources (ESs) as illustrated in Fig. 9. The error
is also broken down into false positives (FPs) and FNs, and
Fig. 10 illustrates the average FPs and FNs reported by the
proposed and each of the baseline methods.



EMAD-UD-DIN et al.: BF-BASED OCCUPANCY DETECTION USING NETWORKED SLEEPIR SENSORS

22841

ESC
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Fig. 9. Pie chart illustrating the contribution of each ES toward the FPs
and FNs reported by the proposed method.

TABLE IlI
ACCURACY AND EXECUTION TIME COMPARISON BETWEEN BASELINE
AND PROPOSED METHODS

Avg Execution
0,
Method Accuracy (%) time (ms)
EKF 76.52+5.01% 87+1.15
PF 84.29+4.38% 698+122.02
X1|X2|X3|X4|X5 68.36+9.73% 14+0.0
BF 92.04+4.40% 59+1.35

C. Results Discussion

The presented results in Section VI-D underscore some
key points. First, BF consistently shows superior performance
both in terms of accuracy and execution time when compared
to EKF [8] and PF [5] implementations. It is important
to highlight that each of these implementations has unique
strengths and weaknesses and cannot be considered repre-
sentative of the whole class of EKF or PF implementations.
While the PF implementation is similar to the proposed BF
implementation, it is important to highlight some important
features of the EKF implementation. The EKF implementation
is a real-time EKF-based networked sensor-based occupancy
estimation algorithm. This system originally estimated the
number of occupants in each room of the monitored building.
We modified the EKF system to estimate the binary occupancy
and use its output to compare with our proposed BF output.
This EKF system handles the nonlinearity in the occupancy
detection data by placing certain constraints on the model like
placing upper bounds and lower bounds on exit/entrance rates,
placing upper bounds on occupant flow from one room to
another, and conservation principle on the number of people
in the building.

Table II highlights an important aspect of the proposed BF
system, i.e., scaling down to a smaller number of sensor nodes.
If a sensor node needs to be dropped from the system, the
proposed method considers the observations from such sensor
nodes as unoccupied. Any node that has an unoccupied status
does not determine the present state of the system, e.g., for
the three-node scenario, the status of nodes X!, X% is set to
unoccupied permanently. Hence, these nodes do not contribute
toward the states of the system by design.

The higher accuracy of the proposed BF demonstrated in
Table III is primarily because of the sensor model deployed in
the proposed method. The sensor model was able to integrate

TABLE IV
IMPLEMENTATION COMPARISON BETWEEN BASELINE
AND PROPOSED METHODS

Metrics EKF PF BF
(Slz:zzfiﬁs:}g?gee) 45.75ec+3.79% | 298.5seck6.12% | 43.5sec £5.61%
(hig}f;fl‘;arcrywise) 63.74+7.81% 81.8249.26% 88.13£9.02%
(low’z;cl‘;?cnyoise) 84.0124.75% 87.5945.22% 97.48+3.37%
87+035% 752£14.27% 53:041%
Memory use KB RAM KB RAM KB RAM

the internode and entrance proximity information into the
Bayesian updates rendering the proposed method simple yet
effective enough to surpass an inherently superior PF-based
method. The execution time results for BF are not very
different from EKF, and both methods use effectively similar
steps to reach an estimate. Matrix inversion remains the most
computationally expensive step for EKF while the transition
model matrix model evaluation is the most time-consuming
phase for the proposed BF method. It should be mentioned
here that the transition model matrix is only evaluated once
for each node deployment configuration.

The row for the method ftitled “X'|X*|X3|X*|X>” in
Table III denotes the performance results for the system level
output where the algorithm is simply a union of binary occu-
pancy status from each node. This binary status is generated
by the ML thresholding algorithm for each sensor node. For
this system-level union algorithm, it can be observed that
each of the baseline estimation algorithms (EKF, PF, and
BF) is significantly more accurate than this simple rule-based
method.

Table IV highlights the application-specific implementa-
tion issues encountered during the method evaluation phase.
Metrics like root-mean-square error (RMSE) are not suit-
able for occupancy detection performance comparison while
the estimator’s response to high noise levels and sudden
changes in the occupancy scenarios is critical. It can be
observed in Table IV that the proposed BF-based method
performs optimally in terms of memory usage and robust-
ness to high-noise metrics. PF is superior in terms of
low-accuracy drop as an occupancy scenario change happens
between two activities, e.g., sleeping (low-noise) to cooking
(high-noise).

The execution time listed in Table III is based on the
Raspberry Pi 4 board. Since memory usage is a critical
parameter in any loT application, we tested the platforms listed
in Table IV for memory use in the IoT platforms listed in
Table V. We also found the maximum power draw a result
of the execution of the proposed and baseline network-level
estimation methods.

D. Error Breakdown

The ESs illustrated in Fig. 9 were determined by attributing
the errors to the location and time of certain IR anomalies
like IR noise due to cooking, warm water in the sink, or IR
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Accuracy (EKF): 76.4% Accuracy (Particle Filter): 84.3% Accuracy (X1|X2|X3|X4|X5): 68.6% Accuracy (Bayes Filter): 92.2%
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Predicted Class Predicted Class Predicted Class Predicted Class

Fig. 10. Confusion matrices showing the performance comparison between the EKF, PF, simple node output union algorithm, and proposed BF

method.

TABLE V

POWER CONSUMPTION COMPARISON BETWEEN BASELINE

AND PROPOSED METHODS

configuration to achieve high accuracy occupancy detection
are proven by the results that are evaluated over a long-term
dataset that spans over 30 days. Results indicate an average

Platform Name CAVg Pov&t’f‘fr Pros Cons 23.68% occupancy accuracy impr.ovelnllent when compared to
onsumplion the accuracy state delivered by individual SLEEPIR nodes.
- Large form factor .-
-4 GB RAM - Power consumntion]  Results also indicate an average 7.74% occupancy accuracy
Raspberry Pi 4 | 600 mA @ 5V |- 1.5 GHz Quad Core P . .
brocessor - No ADC support improvement when compared to the accuracy state determined
- Cost: $35 by the previously proposed PF-based occupancy estimation
SparkFun Edge - BLE 5 capable - 384 KB RAM algorithm. Furthermore, the proposed BF-based method is
Development | 6 A @ 3.6V ADC P ot - 48 MHz CPU g : ’ prop .

Board [ A0L suppo - Cost: $16.50 shown to be faster by orders of magnitude when compared to
Arduino Nano | o o1 |- BLE S capable - 245161\/1 KI;?» %?[h;[ a competing Pf—based occupancy detection implementation.
33BLE Sense m - ADC support ot $§2 30 Code Repository:

340 KB RAM . The. code for C++ implementati.on for the proposed method
STM1§;%C71:thr}on 178 mA @ 5V |- ADC Support -SRII\B/IL%onex M7 is avallable-: at the following repository:
1c8 - Cgst' $56.23 https://github.com/em22ad/system_level_occupancy_det
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