
MACHINE LEARNING AUGMENTATION IN MICRO-SENSOR
ASSEMBLIES

Mohammad H Hasan1, Fadi Alsaleem1, Amin Abbasalipour2, Siavash Pourkamali Anaraki2,
Muhammad Emad-Un-Din3, Roozbeh Jafari3

1University of Nebraska – Lincoln, Omaha, NE, USA
2University of Texas – Dallas, Dallas, TX, USA

3Texas A&M University, College Station, TX, USA

ABSTRACT

The size and power limitations in small electronic
systems such as wearable devices limit their potential.
Significant energy is lost utilizing current computational
schemes in processes such as analog-to-digital conversion and
wireless communication for cloud computing. Edge computing,
where information is processed near the data sources, was shown
to significantly enhance the performance of computational
systems and reduce their power consumption. In this work, we
push computation directly into the sensory node by presenting
the use of an array of electrostatic Microelectromechanical
systems (MEMS) sensors to perform colocalized sensing-and-
computing. The MEMS network is operated around the pull-in
regime to access the instability jump and the hysteresis available
in this regime. Within this regime, the MEMS network is capable
of emulating the response of the continuous-time recurrent
neural network (CTRNN) computational scheme. The network
is shown to be successful at classifying a quasi-static input
acceleration waveform into square or triangle signals in the
absence of digital processors. Our results show that the MEMS
may be a viable solution for edge computing implementation
without the need for digital electronics or micro-processors.
Moreover, our results can be used as a basis for the development
of new types of specialized MEMS sensors (ex: gesture
recognition sensors)

INTRODUCTION

The miniaturization of transistors and sensors has
enabled the development of extremely compact wearable
devices. These devices offer great potential to improve the
quality of life of humans by monitoring operator health and
performing diagnostics [1]. The potential of wearable devices is
nonetheless hampered by the size and power limitations in

commercial and research designs. Wearable devices are expected
to perform complex classification tasks in real time while
operating at extremely low power as to seldom require
recharging or rely completely on energy harvesting as a power
source.

Computational power limitation is often tackled by out-
sourcing computation via clouding computing. This approach,
while successful, is extremely power consuming [2,3] and may
pause to some security concerns [4]. Recent works address these
problems by focusing on optimizing the hardware of wearable
devices by using energy-efficient components [5] or by
optimizing the sampling rate of sensor data and the wireless
communication rate with external devices [6]. These approaches
serve to alleviate energy consumption problems. However, they
do not address the energy inefficiency introduced in the analog-
to-digital conversion (ADC) and wireless communication
processes. Moreover, lowering the rates of data sampling reduces
the accuracy of algorithms that require fast processing rate such
as heart rate monitoring and fall detection.

Therefore, to reduce the need for the computationally
expensive ADC and digital processing, there is a great need for
analog sensors capable of performing computation on the edge
and can easily be interfaced with digital computing devices.
Microelectromechanical systems (MEMS) devices are prime
candidates for utilization in this scheme as they are already used
as sensory elements in wearable devices and smart systems.
Moreover, individual MEMS devices were shown to have
computationally attractive features that resemble those of
continuous-time recurrent neurons (CTRNs) [7,8].

This work tackles the problem of performing energy-
efficient computation by relying on the highly energy-efficient
smart MEMS networks to perform high-level computational
tasks in situ, and then sending the processing units the pre-
processed unit at a significantly lower rate. This work is inspired
by the use of MEMS sensors as threshold switches [9] and digital

DETC2020-22665

Copyright © 2020 ASME

Proceedings of the ASME 2020
International Design Engineering Technical Conferences

and Computers and Information in Engineering Conference
IDETC/CIE2020

August 17-19, 2020, Virtual, Online

V001T01A015-1

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/83907/V001T01A015/6585962/v001t01a015-detc2020-22665.pdf by Texas A & M

 U
niversity user on 16 D

ecem
ber 2020

https://crossmark.crossref.org/dialog/?doi=10.1115/DETC2020-22665&domain=pdf&date_stamp=2020-11-03

accelerometers [10], which may be viewed as early examples of
computation at the sensor level. However, in this work, more
intensive computing is required.

The organization of this paper is as follows: first, we
introduce the formulation of the MEMS computing scheme by
providing a computational model of coupled MEMS dynamics.
Next, we optimize a small network of MEMS devices to classify
an acceleration waveform into square and triangle signals. We
then show the classification results using the MEMS network.
Finally, we discuss our results and conclude the paper.

NETWORK FORMULATION

The dynamics of a single electrostatic some MEMS
device can be modeled as a single degree-of-freedom spring-
mass-damper system, as shown in Figure 1. When placed in a
network of 𝑁 MEMS devices, the equation of motion of the 𝑖!"
MEMS device is given by (1):

𝑚#𝑥$̈(𝑡) + 𝑐#𝑥$̇(𝑡) + 𝑘#𝑥#(𝑡) =
%&!((!(!))"

*+,!-.!(!)/
" −𝑚#�̈�(𝑡)

𝑖 = 1,2, … ,𝑁 (1)

where 𝑚#, 𝑐# and 𝑘# are the effective mass, damping constant and
linear stiffness of the ith MEMS device in the assembly of N
MEMS devices, respectively. 𝑥#(𝑡) is the deflection the MEMS
device at time t, 𝜀 is the electrical permittivity, 𝐴# is the
overlapping electrode area, 𝑑# is nominal separation distance
between MEMS electrodes, 𝑉#(𝑡) is the effective voltage acting
on MEMS i, and �̈�(𝑡) is the base acceleration.

The electrostatic forcing in (1) results in a singularity
when the two MEMS electrodes come in contact, or when
𝑥#(𝑡) = 𝑑#, named the pull-in instability. This instability,
represented by a sudden response jump, has been shown to be
useful when operating a MEMS sensor as a threshold switch. The
pull-in regime is also known to have hysteresis; the pull-in
voltage is higher than the release voltage. Switching instability
and memory retention via hysteresis has been shown two of the
most important properties of a class of artificial neurons named
continuous-time recurrent neurons (CTRNs), which form the
building block of a non-conventional computing scheme named
continuous-time recurrent neural networks (CTRNNs) [7.8]. As
these features inherently exist within the pull-in regime, this
work focuses on operating a MEMS network around the pull-in
regimes.

To eliminate the pull-in singularity in simulation and
avoid electrical contact in practice, stoppers are installed in each
MEMS device at a distance 𝑥0,#. As such, (1) is overridden to
𝑥#(𝑡) = 𝑥0,! and �̇�#(𝑡) = 0 if it was found that 𝑥#(𝑡) > 𝑥0,#.

Coupling MEMS devices is essential to emulate the
behavior of a CTRNN and to complete the network. Here,
MEMS devices are coupled electrically via the term 𝑉#(𝑡) as
shown in (2):

𝑉#(𝑡) = 𝑉2#30,# + ∑ 𝑤#4𝑉56!,4(𝑡)7
489,4:# (2)

Figure 1. MEMS model as a single degree-of-freedom spring-
mass-damper system.

Figure 2. A MEMS network example. Each numbered node
represents a MEMS device. Here, i = 1,2, … , 7. The figure
contains some connection labels. The network contains two
inputs, I9 and I* and 2 outputs O; and O<.

where 𝑉2#30,# is the DC bias voltage for MEMS 𝑖, 𝑤#4 is the
coupling weight between MEMS 𝑖 and MEMS 𝑗, noting that
𝑤#4 ≠ 𝑤4# necessarily, and 𝑉56!,4 is the output voltage of MEMS
𝑗 given by (3):

 𝑉56!,4(𝑡) = 𝑉2#30,$𝑈C𝑥4(𝑡) − 𝑥0,4D (3)

where 𝑈(.) is a unit step function. We note here that
self-connection, typically given by 𝑤##, is essential for
computation. While implicit, this recurrent connection is
observed in the pull-in regime as evidenced by hysteresis. Here,
the MEMS connections are forward and unidirectional (aside
from the implicit self-feedback connection). Therefore, 𝑤#4 = 0
if 𝑗 > 0, forming layers in the network, much like simulated
CTRNNs, as shown in Figure 2.

We note here that, while the MEMS dynamics are
continuous in nature, the state of the MEMS neuron is only
interpreted as a binary state in this work due to operation in the
pull-in regime. It is still possible to assume that the MEMS state

Fixed electrode

Fixed support

Microbeam

𝒅𝒊

𝒌𝒊𝒄𝒊
𝒎𝐢𝒙𝒊𝒚𝒊

Sensor casing

3

5

4

6

7

1

2

𝐼"

𝐼#

𝑂%

𝑂&

Copyright © 2020 ASMEV001T01A015-2

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/83907/V001T01A015/6585962/v001t01a015-detc2020-22665.pdf by Texas A & M

 U
niversity user on 16 D

ecem
ber 2020

is analog in nature. However, this requires a means of
measurement for the response of each MEMS device, defeating
the purpose of using MEMS devices as sensors and computing
elements simultaneously.

COMPUTATIONAL TASK AND NETWORK STRUCTURE

Classification is one of the most popular tasks in the
machine learning literature. For this work, we consider a simple
classification task as a test for computational potential of a
network of MEMS devices. The task here involves classifying
an input waveform into either ‘Square’ signal or ‘Triangle’
signal, as shown in Figure 3. The input waveforms are supplied
as acceleration waveforms. We note here that, unlike other
physical implementations of neural networks where inputs are
electrical signals, the MEMS network used simultaneously
performs sensing and computing simultaneously. For the MEMS
CTRNN to perform the computational task properly, the size of
the network and the connection weights between the MEMS
devices are optimized. Optimization was performed manually by
starting from a ladder diagram optimization scheme, assuming
each MEMS device is a relay. Under that assumption, 5 MEMS
devices are required to perform the computational task. The
number of MEMS devices required is reduced to 3 by taking
advantage of the dynamics of MEMS devices, namely inertia and
hysteresis.

The bias voltages were chosen such that 𝑉2,9 > 𝑉2,* to
force MEMS1 to pull-in ahead of MEMS2 when supplied by a
ramped signal. MEMS1 and MEMS2 pull-in nearly
simultaneously when a square acceleration signal acts on the
CTRNN. The connection weights between the MEMS devices in
the network are also optimized manually by taking advantage of
the ‘selection properties’ of a network of a network of CTRNs
[12,13]. Because of selection, the influence of input signals
depends on the amplitude of the input signals as well as their
temporal order. We note here that, due to our chosen method of
weight optimization, the MEMS CTRNN will be able to classify
any quasi-static acceleration signal. However, at acceleration
frequencies close to the natural frequencies of MEMS1 and
MEMS2, this method fails. Other optimization methods would
be required to enable classification of such signals.

(a)

(b)
Figure 3. Classification task considered in this work. (a)
Visualization of the binary classification problem. (b) MEMS
network used for classification. The network is composed of
three identical devices. Two devices receive an input
acceleration signal and one device performs classification.

CLASSIFICATION TASK USING A MEMS CTRNN

For our task, a network of identical MEMS
accelerometer devices was used. The parameters of the MEMS
devices are presented in table 1. Additional information about
the sensors used can be found in [14]. The MEMS devices are
assumed to be electrically coupled using operational amplifiers
to incorporate connection weights. Here, it is assumed that
MEMS1 and MEMS2 are input neurons, directly influenced by
the acceleration signal. MEMS3, however, is in the computing
layer, thus, it is oblivious to the acceleration signal. This can be
achieved by rotating MEMS3 such that the acceleration signal is
perpendicular to the MEMS motion. This can also be achieved
by reducing the mass of MEMS3 such that the inertial forces are
significantly reduced. In this work, the former approach is
assumed.

The MEMS CTRNN is subjected to a sequence of a
square and triangle signal with an amplitude �̈� = 	−5𝑔. The
results of the MEMS CTRNN are shown in Figure 4. The shock
signal excites both MEMS1 and MEMS2 (Figure 4,a and b,
respectively). Initially, when a triangle signal is observed,
MEMS1 pulls-in (at around -2g) first due to its higher bias
voltage. Consequently, MEMS3 pull-in. When the acceleration
signal ramps to -3g, MEMS2 pull-in. Since MEMS2 has a
negative connection weight, it reduces 𝑉=(𝑡). However, this
reduction is insufficient to release MEMS3. Thus, MEMS3
remains pulled-in until the acceleration amplitude is reduced to
below -2g.

Alternatively, when a square signal is encountered, MEMS1
and MEMS2 experience a sudden and immediate change in
amplitude, which results in them pulling-in (nearly)
simultaneously. In this case, the voltage acting on MEMS3 is
immediately equal to 𝑤=9𝑉2,9 +𝑤=,*𝑉2,* + 𝑉2,=. By design, this
voltage is insufficient to pull-in MEMS3. Therefore, the output
of MEMS3 remains low and square classification is performed.
Interestingly, MEMS inertia is beneficial in this computing

Copyright © 2020 ASMEV001T01A015-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/83907/V001T01A015/6585962/v001t01a015-detc2020-22665.pdf by Texas A & M

 U
niversity user on 16 D

ecem
ber 2020

scheme as inertia prevents MEMS3 from pulling-in if MEMS1
pulled in momentarily prior to MEMS2. Moreover, inertia
allows this scheme to be performed to classify imperfect square
signals, such as signals generated from a shakers which tend to
be trapezoidal in shape, assuming the signal ramp is sufficiently
steep, since the MEMS devices will slightly lag the input signal.

Table 1: MEMS parameters.
MEMS Parameter Value
l 9 mm
b 5.32 mm
𝜀 8.85×10-12 F/m
d 42 𝜇m
k 215 N/m
𝑚 143 mg
𝑐 0.351 N.s/m
𝑉2,9 50 V
𝑉2,* 50 V
𝑉2,= 50 V
𝑤=9 1.5
𝑤=* -1
𝑥0 30 𝜇𝑚

The results from Figure 4 also clearly demonstrate the
importance of hysteresis in a MEMS CTRNN as inputs of equal
amplitudes may lead to significantly different behaviors
depending on past information. (see the areas marked by the red
circle and black dashed circle in Figure 4a-d, in which MEMS1
and MEMS2 are simultaneously pulled-in, yet MEMS3 can
assume two different configurations).

DISCUSSION AND CONCLUSION

This work presents a new class of MEMS sensory
arrays capable of performing non-trivial computational tasks at
the sensor level. The designed sensory array exploits the inherent
nonlinear dynamics of MEMS devices in the pull-in regime to
mimic the behavior of a special class of artificial neurons, named
continuous-time recurrent neurons (CTRNs). Coupling MEMS
within an array enables non-conventional computing using the
MEMS dynamics, in an analog fashion, thus eliminating the need
for some analog-to-digital conversion.

For simple tasks, training such a binary MEMS network
is simple using ladder logic as a starting point. Additional
modifications by considering MEMS dynamics can reduce the
size of the network. The computational task considered in this
work involves a simple binary classification of quasi-static

(a) (b) (c)

(d) (e)

Figure 4. Classification test results showing the response of MEMS1 (a), MEMS2 (b) and MEMS3 (c). (d) The effective votlage
acting on MEMS3 V=(t). (e) The state of MEMS3 when subject to a triangle or a square signal. Note: the points marked by red and
black circles in (a-d) represent points with similar MEMS1 and MEMS2 states but different MEMS3 states, indicating the importance
of memory in a MEMS CTRNN.

Copyright © 2020 ASMEV001T01A015-4

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/83907/V001T01A015/6585962/v001t01a015-detc2020-22665.pdf by Texas A & M

 U
niversity user on 16 D

ecem
ber 2020

square and triangle acceleration signals. We show that the trained
MEMS network is capable of classifying the input signal even in
regimes in which the states of the input-layer MEMS devices
(MEMS1 and MEMS2) are identical due to memory retention at
the pull-in regime.

This work represents a simple application of intelligent
sensory arrays that go beyond simple analog and digital sensing
into the domain of classification. Such sensory arrays are
expected to significantly reduce the computational load on
processors in two ways: perform some computational tasks
internally, and allow processors to sleep until a high-level signal
of interest triggers an event (such as detecting a triangle signal,
rather than relying on a simple signal threshold to trigger the
event).

REFERENCES

 [1] Green, E. M., van Mourik, R., Wolfus, C., Heitner, S. B.,
Dur, O., & Semigran, M. J., 2017, “Machine learning detection
of obstructive hypertrophic cardiomyopathy using a wearable
biosensor. Circulation”, 136(suppl_1), pp. A24031-A24031.
[2] Shi, W., & Dustdar, S., 2016, “The promise of edge
computing. Computer”, 49(5), pp. 78-81.
[3] Kalantarian, H., Sideris, C., Mortazavi, B., Alshurafa, N., &
Sarrafzadeh, M., 2016, “Dynamic computation offloading for
low-power wearable health monitoring systems”. IEEE
Transactions on Biomedical Engineering, 64(3), pp. 621-628.
[4] Zhou, J., Cao, Z., Dong, X., & Lin, X., 2015, “Security and
privacy in cloud-assisted wireless wearable communications:
Challenges, solutions, and future directions”, IEEE wireless
Communications, 22(2), pp. 136-144.
[5] Maurer, U., Rowe, A., Smailagic, A., & Siewiorek, D. P.
,2006, “eWatch: a wearable sensor and notification platform”,
International Workshop on Wearable and Implantable Body
Sensor Networks, April 3, 2006, (BSN'06), IEEE, pp. 4-pp.
[6] Fafoutis, X., Marchegiani, L., Elsts, A., Pope, J., Piechocki,
R., & Craddock, I. ,2018, “Extending the battery lifetime of
wearable sensors with embedded machine learning”. 2018 IEEE
4th World Forum on Internet of Things (WF-IoT), February,
2018, IEEE, pp. 269-274.
[7] Alsaleem, F., Hasan, M. H., Tesfay, M., & Rafaie, M. , 2018,
"MEMS As a Continuous Time Recurrent Neuron (CTRN)
Computing Unit." Proceedings of the ASME 2018 International
Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. Quebec City, Quebec,
Canada. August 26–29, 2018. ASME paper no. DETC2018-
85075.
[8] Alsaleem, F. M., Hasan, M. H., & Tesfay, M. K. ,2018, “A
MEMS nonlinear dynamic approach for neural computing”.
Journal of Microelectromechanical Systems, 27(5), pp. 780-789.
[9] Younis, M. I., Alsaleem, F. M., Miles, R., & Su, Q. ,2007,
“Characterization of the performance of capacitive switches
activated by mechanical shock”. Journal of Micromechanics and
Microengineering, 17(7), pp. 1360.

[10] Kumar, V., Jafari, R., & Pourkamali, S. ,2016, “Ultra-low
power digitally operated tunable MEMS accelerometer”. IEEE
Sensors Journal, 16(24), pp. 8715-8721.
[12] G. Schöner, J. Spencer, and A. Schutte, 2015, “Dynamic
Thinking”, 1st ed. London, U.K.: Oxford Univ. Press.
[13] G. Schöner, 2008, “Dynamical systems approaches to
cognition,” in Toward a New Unified Theory of Development:
Connectionism and Dynamical Systems Theory Re-Considered.
New York, NY, USA: Oxford Univ. Press.
[14] Alsaleem, F. M., Younis, M. I., & Ouakad, H. M., 2009, “On
the nonlinear resonances and dynamic pull-in of electrostatically
actuated resonators”. Journal of Micromechanics and
Microengineering, 19(4), pp. 045013.

Copyright © 2020 ASMEV001T01A015-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/83907/V001T01A015/6585962/v001t01a015-detc2020-22665.pdf by Texas A & M

 U
niversity user on 16 D

ecem
ber 2020

