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ABSTRACT 

The size and power limitations in small electronic 
systems such as wearable devices limit their potential. 
Significant energy is lost utilizing current computational 
schemes in processes such as analog-to-digital conversion and 
wireless communication for cloud computing. Edge computing, 
where information is processed near the data sources, was shown 
to significantly enhance the performance of computational 
systems and reduce their power consumption.  In this work, we 
push computation directly into the sensory node by presenting 
the use of an array of electrostatic Microelectromechanical 
systems (MEMS) sensors to perform colocalized sensing-and-
computing. The MEMS network is operated around the pull-in 
regime to access the instability jump and the hysteresis available 
in this regime. Within this regime, the MEMS network is capable 
of emulating the response of the continuous-time recurrent 
neural network (CTRNN) computational scheme. The network 
is shown to be successful at classifying a quasi-static input 
acceleration waveform into square or triangle signals in the 
absence of digital processors. Our results show that the MEMS 
may be a viable solution for edge computing implementation 
without the need for digital electronics or micro-processors. 
Moreover, our results can be used as a basis for the development 
of new types of specialized MEMS sensors (ex: gesture 
recognition sensors)    

INTRODUCTION 

The miniaturization of transistors and sensors has 
enabled the development of extremely compact wearable 
devices. These devices offer great potential to improve the 
quality of life of humans by monitoring operator health and 
performing diagnostics [1]. The potential of wearable devices is 
nonetheless hampered by the size and power limitations in 

commercial and research designs. Wearable devices are expected 
to perform complex classification tasks in real time while 
operating at extremely low power as to seldom require 
recharging or rely completely on energy harvesting as a power 
source. 

Computational power limitation is often tackled by out-
sourcing computation via clouding computing. This approach, 
while successful, is extremely power consuming [2,3] and may 
pause to some security concerns [4]. Recent works address these 
problems by focusing on optimizing the hardware of wearable 
devices by using energy-efficient components [5] or by 
optimizing the sampling rate of sensor data and the wireless 
communication rate with external devices [6]. These approaches 
serve to alleviate energy consumption problems. However, they 
do not address the energy inefficiency introduced in the analog-
to-digital conversion (ADC) and wireless communication 
processes. Moreover, lowering the rates of data sampling reduces 
the accuracy of algorithms that require fast processing rate such 
as heart rate monitoring and fall detection. 

Therefore, to reduce the need for the computationally 
expensive ADC and digital processing, there is a great need for 
analog sensors capable of performing computation on the edge 
and can easily be interfaced with digital computing devices. 
Microelectromechanical systems (MEMS) devices are prime 
candidates for utilization in this scheme as they are already used 
as sensory elements in wearable devices and smart systems. 
Moreover, individual MEMS devices were shown to have 
computationally attractive features that resemble those of 
continuous-time recurrent neurons (CTRNs) [7,8]. 

This work tackles the problem of performing energy-
efficient computation by relying on the highly energy-efficient 
smart MEMS networks to perform high-level computational 
tasks in situ, and then sending the processing units the pre-
processed unit at a significantly lower rate. This work is inspired 
by the use of MEMS sensors as threshold switches [9] and digital 
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accelerometers [10], which may be viewed as early examples of 
computation at the sensor level. However, in this work, more 
intensive computing is required. 

The organization of this paper is as follows: first, we 
introduce the formulation of the MEMS computing scheme by 
providing a computational model of coupled MEMS dynamics. 
Next, we optimize a small network of MEMS devices to classify 
an acceleration waveform into square and triangle signals. We 
then show the classification results using the MEMS network. 
Finally, we discuss our results and conclude the paper. 

NETWORK FORMULATION 

The dynamics of a single electrostatic some MEMS 
device can be modeled as a single degree-of-freedom spring-
mass-damper system, as shown in Figure 1. When placed in a 
network of 𝑁 MEMS devices, the equation of motion of the 𝑖!" 
MEMS device is given by (1): 

𝑚#𝑥$̈(𝑡) + 𝑐#𝑥$̇(𝑡) + 𝑘#𝑥#(𝑡) =
%&!((!(!))"

*+,!-.!(!)/
" −𝑚#𝑦̈(𝑡)

𝑖 = 1,2, … ,𝑁 (1) 

where 𝑚#, 𝑐# and 𝑘# are the effective mass, damping constant and 
linear stiffness of the ith MEMS device in the assembly of N 
MEMS devices, respectively. 𝑥#(𝑡) is the deflection the MEMS 
device at time t, 𝜀 is the electrical permittivity, 𝐴# is the 
overlapping electrode area, 𝑑# is nominal separation distance 
between MEMS electrodes, 𝑉#(𝑡) is the effective voltage acting 
on MEMS i, and 𝑦̈(𝑡) is the base acceleration.  

The electrostatic forcing in (1) results in a singularity 
when the two MEMS electrodes come in contact, or when 
𝑥#(𝑡) = 𝑑#, named the pull-in instability. This instability, 
represented by a sudden response jump, has been shown to be 
useful when operating a MEMS sensor as a threshold switch. The 
pull-in regime is also known to have hysteresis; the pull-in 
voltage is higher than the release voltage. Switching instability 
and memory retention via hysteresis has been shown two of the 
most important properties of a class of artificial neurons named 
continuous-time recurrent neurons (CTRNs), which form the 
building block of a non-conventional computing scheme named 
continuous-time recurrent neural networks (CTRNNs) [7.8]. As 
these features inherently exist within the pull-in regime, this 
work focuses on operating a MEMS network around the pull-in 
regimes. 

To eliminate the pull-in singularity in simulation and 
avoid electrical contact in practice, stoppers are installed in each 
MEMS device at a distance 𝑥0,#. As such, (1) is overridden to 
𝑥#(𝑡) = 𝑥0,! and 𝑥̇#(𝑡) = 0 if it was found that 𝑥#(𝑡) > 𝑥0,#.   

Coupling MEMS devices is essential to emulate the 
behavior of a CTRNN and to complete the network. Here, 
MEMS devices are coupled electrically via the term 𝑉#(𝑡) as 
shown in (2): 

𝑉#(𝑡) = 𝑉2#30,# + ∑ 𝑤#4𝑉56!,4(𝑡)7
489,4:#  (2) 

Figure 1. MEMS model as a single degree-of-freedom spring-
mass-damper system. 

Figure 2. A MEMS network example. Each numbered node 
represents a MEMS device. Here, i = 1,2, … , 7. The figure 
contains some connection labels. The network contains two 
inputs, I9 and I* and 2 outputs O; and O<. 

where 𝑉2#30,# is the DC bias voltage for MEMS 𝑖, 𝑤#4 is the 
coupling weight between MEMS 𝑖 and MEMS 𝑗, noting that 
𝑤#4 ≠ 𝑤4# necessarily, and 𝑉56!,4 is the output voltage of MEMS 
𝑗 given by (3): 

 𝑉56!,4(𝑡) = 𝑉2#30,$𝑈C𝑥4(𝑡) − 𝑥0,4D (3) 

where 𝑈(. ) is a unit step function. We note here that 
self-connection, typically given by 𝑤##, is essential for 
computation. While implicit, this recurrent connection is 
observed in the pull-in regime as evidenced by hysteresis. Here, 
the MEMS connections are forward and unidirectional (aside 
from the implicit self-feedback connection). Therefore, 𝑤#4 = 0 
if 𝑗 > 0, forming layers in the network, much like simulated 
CTRNNs, as shown in Figure 2.   

We note here that, while the MEMS dynamics are 
continuous in nature, the state of the MEMS neuron is only 
interpreted as a binary state in this work due to operation in the 
pull-in regime. It is still possible to assume that the MEMS state 
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is analog in nature. However, this requires a means of 
measurement for the response of each MEMS device, defeating 
the purpose of using MEMS devices as sensors and computing 
elements simultaneously. 

COMPUTATIONAL TASK AND NETWORK STRUCTURE 

Classification is one of the most popular tasks in the 
machine learning literature. For this work, we consider a simple 
classification task as a test for computational potential of a 
network of MEMS devices. The task here involves classifying 
an input waveform into either ‘Square’ signal or ‘Triangle’ 
signal, as shown in Figure 3. The input waveforms are supplied 
as acceleration waveforms. We note here that, unlike other 
physical implementations of neural networks where inputs are 
electrical signals, the MEMS network used simultaneously 
performs sensing and computing simultaneously. For the MEMS 
CTRNN  to perform the computational task properly, the size of 
the network and the connection weights between the MEMS 
devices are optimized. Optimization was performed manually by 
starting from a ladder diagram optimization scheme, assuming 
each MEMS device is a relay. Under that assumption, 5 MEMS 
devices are required to perform the computational task. The 
number of MEMS devices required is reduced to 3 by taking 
advantage of the dynamics of MEMS devices, namely inertia and 
hysteresis. 

The bias voltages were chosen such that 𝑉2,9 > 𝑉2,* to 
force MEMS1 to pull-in ahead of MEMS2 when supplied by a 
ramped signal. MEMS1 and MEMS2 pull-in nearly 
simultaneously when a square acceleration signal acts on the 
CTRNN. The connection weights between the MEMS devices in 
the network are also optimized manually by taking advantage of 
the ‘selection properties’ of a network of a network of CTRNs 
[12,13]. Because of selection, the influence of input signals 
depends on the amplitude of the input signals as well as their 
temporal order. We note here that, due to our chosen method of 
weight optimization, the MEMS CTRNN will be able to classify 
any quasi-static acceleration signal. However, at acceleration 
frequencies close to the natural frequencies of MEMS1 and 
MEMS2, this method fails. Other optimization methods would 
be required to enable classification of such signals. 

(a) 

(b) 
Figure 3. Classification task considered in this work. (a) 
Visualization of the binary classification problem. (b) MEMS 
network used for classification. The network is composed of 
three identical devices. Two devices receive an input 
acceleration signal and one device performs classification. 

CLASSIFICATION TASK USING A MEMS CTRNN 

For our task, a network of identical MEMS 
accelerometer devices was used. The parameters of the MEMS 
devices are presented in table 1. Additional information about 
the sensors used can be found in [14]. The MEMS devices are 
assumed to be electrically coupled using operational amplifiers 
to incorporate connection weights. Here, it is assumed that 
MEMS1 and MEMS2 are input neurons, directly influenced by 
the acceleration signal. MEMS3, however, is in the computing 
layer, thus, it is oblivious to the acceleration signal. This can be 
achieved by rotating MEMS3 such that the acceleration signal is 
perpendicular to the MEMS motion. This can also be achieved 
by reducing the mass of MEMS3 such that the inertial forces are 
significantly reduced. In this work, the former approach is 
assumed.  

The MEMS CTRNN is subjected to a sequence of a 
square and triangle signal with an amplitude 𝑦̈ = 	−5𝑔. The 
results of the MEMS CTRNN are shown in Figure 4. The shock 
signal excites both MEMS1 and MEMS2 (Figure 4,a and b, 
respectively). Initially, when a triangle signal is observed, 
MEMS1 pulls-in (at around -2g) first due to its higher bias 
voltage. Consequently, MEMS3 pull-in. When the acceleration 
signal ramps to -3g, MEMS2 pull-in. Since MEMS2 has a 
negative connection weight, it reduces 𝑉=(𝑡). However, this 
reduction is insufficient to release MEMS3. Thus, MEMS3 
remains pulled-in until the acceleration amplitude is reduced to 
below -2g. 

Alternatively, when a square signal is encountered, MEMS1 
and MEMS2 experience a sudden and immediate change in 
amplitude, which results in them pulling-in (nearly) 
simultaneously. In this case, the voltage acting on MEMS3 is 
immediately equal to 𝑤=9𝑉2,9 +𝑤=,*𝑉2,* + 𝑉2,=. By design, this 
voltage is insufficient to pull-in MEMS3. Therefore, the output 
of MEMS3 remains low and square classification is performed. 
Interestingly, MEMS inertia is beneficial in this computing 
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scheme as inertia prevents MEMS3 from pulling-in if MEMS1 
pulled in momentarily prior to MEMS2. Moreover, inertia 
allows this scheme to be performed to classify imperfect square 
signals, such as signals generated from a shakers which tend to 
be trapezoidal in shape, assuming the signal ramp is sufficiently 
steep, since the MEMS devices will slightly lag the input signal. 

Table 1: MEMS parameters. 
MEMS Parameter Value 
l 9 mm 
b 5.32 mm 
𝜀 8.85×10-12 F/m 
d 42 𝜇m 
k 215 N/m 
𝑚 143 mg 
𝑐 0.351 N.s/m 
𝑉2,9 50 V 
𝑉2,* 50 V 
𝑉2,= 50 V 
𝑤=9 1.5 
𝑤=* -1 
𝑥0 30 𝜇𝑚 

The results from Figure 4 also clearly demonstrate the 
importance of hysteresis in a MEMS CTRNN as inputs of equal 
amplitudes may lead to significantly different behaviors 
depending on past information. (see the areas marked by the red 
circle and black dashed circle in Figure 4a-d, in which MEMS1 
and MEMS2 are simultaneously pulled-in, yet MEMS3 can 
assume two different configurations). 

DISCUSSION AND CONCLUSION 

This work presents a new class of MEMS sensory 
arrays capable of performing non-trivial computational tasks at 
the sensor level. The designed sensory array exploits the inherent 
nonlinear dynamics of MEMS devices in the pull-in regime to 
mimic the behavior of a special class of artificial neurons, named 
continuous-time recurrent neurons (CTRNs). Coupling MEMS 
within an array enables non-conventional computing using the 
MEMS dynamics, in an analog fashion, thus eliminating the need 
for some analog-to-digital conversion. 

For simple tasks, training such a binary MEMS network 
is simple using ladder logic as a starting point. Additional 
modifications by considering MEMS dynamics can reduce the 
size of the network. The computational task considered in this 
work involves a simple binary classification of quasi-static 

(a) (b) (c)

(d) (e)

Figure 4. Classification test results showing the response of MEMS1 (a), MEMS2 (b) and MEMS3 (c). (d) The effective votlage 
acting on MEMS3 V=(t). (e) The state of MEMS3 when subject to a triangle or a square signal. Note: the points marked by red and 
black circles in (a-d) represent points with similar MEMS1 and MEMS2 states but different MEMS3 states, indicating the importance 
of memory in a MEMS CTRNN. 
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square and triangle acceleration signals. We show that the trained 
MEMS network is capable of classifying the input signal even in 
regimes in which the states of the input-layer MEMS devices 
(MEMS1 and MEMS2) are identical due to memory retention at 
the pull-in regime. 

This work represents a simple application of intelligent 
sensory arrays that go beyond simple analog and digital sensing 
into the domain of classification. Such sensory arrays are 
expected to significantly reduce the computational load on 
processors in two ways: perform some computational tasks 
internally, and allow processors to sleep until a high-level signal 
of interest triggers an event (such as detecting a triangle signal, 
rather than relying on a simple signal threshold to trigger the 
event). 
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